
ICB -R-010 AD-A; S21

Cyhorne tICS:

Ena clogsi Human im te

Pel.tormaoce

auiinrTn~t ~ Marc1hb 01

The DTIC ® Review is published by the
Defense Technical Information Center (DTIC),
DTIC-BR, 8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218
Telephone: (703)767-8266, DSN 427-8266
FAX: (703) 767-9070, DSN 427-9070
Email: bibs@dtic.mil

Opinions expressed herein are those of the authors and do
not necessarily reflect those of the Department of Defense
or its elements.

Editorial Staff
Editor: Christian M. Cupp
Research Advisor: Phyllis Levine
Compiler and Composition Editor (Paper): Eric Z. Lahaie
Composition Editor (Electronic): Pamela Jaeger

Distribution
The DTIC Review is approved for public release.

f Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302, Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
03-2001 Final March 2001
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

The DTIC Review 5b. GRANT NUMBER
Cybernetics: Enhancing Human Performance
Vol. 5 No. 3 5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Cupp, Christian M.; Editor 5e. TASK NUMBER
Levine, Phyllis; Research Advisor
Lahaie, Eric Z.; Compiler 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Defense Technical Information Center
DTIC-BR DTIC-BR-TR--2001/01
8725 John J. Kingman Rd, Suite 0944
Ft. Belvoir, VA 22060-6218

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORMONITOR'S ACRONYM(S)
Defense Technical Information Center
DTIC-BR
8725 John J. Kingman Rd, Suite 0944 11. SPONSOR/MONITOR'S REPORT
Ft. Belvoir, VA 22060-6218 NUMBER(S)

12. DISTRIBUTION I AVAILABILITY STATEMENT

A - Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This publication is published irregularly by the Defense Technical Information Center.

14. ABSTRACT

This edition of The DTIC Review explores advancements in the field of cybernetics and the effects this research has on human
performance. Cybernetics attempts to blend humankind's ability to think, reason and learn with machine-kind's productivity and
efficiency. Cybernetic technology is already used industrially, militarily and scientifically, and its impact will only become more
profound in the future. At present, cybernetic technologies are enhancing human performance via training, research assistance,
and manual labor.

The DTIC Review is compiled from recent technical reports submitted to DTIC's database. The bibliography is onl a
representation of available materials.

15. SUBJECT TERMS
Cybernetics, Robotics, Haptics, Artificial Intelligence, Virtual Reality, Human Performance, Virtual Environment, Human
Factors Engineering
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON

OF ABSTRACT OF PAGES Phyllis Levine
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 19b. TELEPHONE NUMBER (include area
Unclassified Unclassified Unclassified Unlimited 244 code)

703-767-8266
Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z3918

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

The D TIC Review

Cybernetics: Enhancing Human Performance

AD-A385219

Vol. 5, No. 3
March, 2001

DTIC® is a registered service mark of the Defense Technical Information Center

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

FOREWARD

Cybernetics attempts to blend humankind's ability to think, reason and learn with machine-
kind's productivity and efficiency. Cybernetic technology is already used industrially,
militarily and scientifically, and its impact will only become more profound in the future.
Technological advancements in cybernetics will dramatically affect our lives as the 21st

century unfolds.

This edition of The DTIC Review focuses upon the latest developments in the area of
cybernetics and its benefits for human performance.

The editorial staff hopes you find this effort of value and appreciate your comments.

Kurt N. Molholm
Administrator

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

TABLE OF CONTENTS

INTRODU CTION ... I

D O CU M EN T 1 .. 2

AD Number: A382305
Corporate Author: Arizona University - Tucson

Department of Electrical and Computer Engineering
Tucson, AZ

Unclassified Title: Soldier Performance Course of Action (COA)
Visualization Aids

Report Date: 2000

D O CU M EN T 2 .. 3

AD Number: A373078
Corporate Author: Stottler Henke Associates, Inc.

San Mateo, CA
Unclassified Title: An Intelligent Training Management System (ITMS)
Report Date: 2000

D O CU M EN T 3 .. 4

AD Number: A378892
Corporate Author: Sytronics Inc.

Dayton, OH
Unclassified Title: Development Manual for 3D World Virtual

Environment Software
Report Date: 1999

D O CU M EN T 4 .. 5

AD Number: A342328
Corporate Author: Computer Graphics Systems Development Corp.

Mountain View, CA
Unclassified Title: Force/Tactile Feedback System for Virtual Reality

Environments
Report Date: 1998

ELECTRONIC REFERENCES ... 6

ADDITIONAL REFERENCES ... 9

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

INTRODUCTION

Cybernetics attempts to blend humankind's ability to think, reason and learn with machine-
kind's productivity and efficiency. While modern computers and robots have proven to be
invaluable tools for people, they still remain limited by programmed parameters and
dependent upon human interaction. Cybernetic technologies will slowly remove these
barriers and allow the development of machines that think and learn on their own by
imitating a person's brain. The end result will be the creation of a virtual human.

Cybernetic technology is already used industrially, militarily and scientifically, and its
impact will only become more profound in the future. Some current uses for cybernetics
include, but are not limited to, civilian and military training, research assistance and manual
labor. Human performance research tools along with virtual environment technology are
being used to keep up with the changing training requirements of DoD personnel. More
emphasis is being placed on practicing a variety of situations, simulation, scenario based
training and situated learning. Ultimately, cybernetic research will provide people with
higher levels of safety through superior training capabilities and/or a reduction of high-risk
tasks that must be performed by humans rather than machines. The addition of cybernetic
capabilities to these machines would increase their usefulness exponentially. Technological
advancements in cybernetics will dramatically effect our lives as the 2 1st century unfolds.
The blend of human and machine will help develop the skills necessary for the warfighter of
the future.

The selected documents and bibliography are a representation of the material available on
cybernetics from DTIC's extensive collection. Additional references, including electronic
resources, can be found at the end of the volume. In-depth literature searches may be
requested by contacting the Reference Team, Network Services Division at the Defense
Technical Information Center: (703) 767-8274/DSN 427-8274;
FAX (703) 767-9070; E-mail bibs@dtic.mil

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

DOCUMENT 1

Soldier Performance
Course of Action (COA) Visualization Aids

AD-A382305

Aug 2000

Arizona University - Tucson
Department of Electrical and Computer Engineering

Tucson, AZ

2

THIS PAGE INTENTIONALLY LEFT BLANK

ARMY.RESEARCH LABORATORY

Soldier Performance Course of Action
(COA) Visualization Aids

Jerzy W. Rozenblit
Michael J. Barnes

Faisal Momen
Jose A. Quijada
Theodore Fichtl

ARL-CR-302 AUGUST 2000

prepared by

University of Arizona
Electrical & Computer Engineering Dept

1230 E. Speedway Blvd.
Tucson, AZ 85721

under contract

DAAD17-99-P-0203

20000920 085
Approved for public release; distribution is unlimited.

Open InventorTM is a trademark of Silicon Graphics, Inc.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of

the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5425

ARL-CR-302 August 2000

Soldier Performance Course of Action
(COA) Visualization Aids

prepared by

Jerzy W. Rozenblit
Faisal Momen
Jose A. Quijada
University of Arizona

Michael J. Barnes
Human Research and Engineering Directorate, ARL

Theodore Fichtl
Compass Foundation

under contract

DAAD 17-99-P-0203

Approved for public release; distribution is unlimited.

III] III~~~ ~~~I [I I]1 =

Abstract

The computer revolution has resulted in extending the possibilities of
battlespace visualization to the brigade commander and below.
However, mobility and bandwidth considerations require that the
systems be efficient to reflect the realities of modem combat. The
Advanced Battlespace Architecture for Tactical Information Selection
(ABATIS) is being developed to be a rapid planning and re-planning
experimental environment. ABATIS's object-oriented architecture has
the advantage of being able to rapidly construct a three-dimensional
battlespace that will accurately represent the essential planning
components of a brigade and smaller division battle environment. The
basic architecture has been extended to include war-gaming logic as
part of the software design, and examples are given that pertain to
specific military problems. This capability will allow ABATIS to
realize fully the implications of battlespace visualization by creating a
human-computer synergy that encourages both human and machine to
generate and evaluate possible courses of action and their
consequences. The human performance implications are discussed,
and particular attention is directed toward research issues related to
terrain visualization, automation, decision making, and cognitive
biases.

ii

TABLE OF CONTENTS

1. Introduction 1

2. Background 2

2.1 Terrain Visualization 2
2.2 Tactical Decision Making 4
2.3 Poor Calibration of Probability Estimates 5
2.4 Confirmation Bias 5

3. ABATIS 7

4. Software Development 8

5. Development of the Symbolic Battlespace
Visualization Framework 10

6. Battlespace Scenario Execution and War Gaming:
A Model-Based Approach 12

7. An Illustrative Scenario 15

7.1 The Area of Operations 15
7.2 The Friendly Maneuver Force 16
7.3 The Opposing Maneuver Force 16
7.4 The War-gaming Logic 16
7.5 Scenario Execution 16

8. Summary and Research Issues 17

References 19

Distribution List 23

Report Documentation Page 27

Figures

1. Evolution From 2-D to 3-D Symbology 11
2. Integrated Battlespace System Architecture 13
3. Integration of ABATIS With a War Gamer 15
4. Instance of the Sample Scenario 17

,,iii

INTENTIONALLY LEFT BLANK

iv

SOLDIER PERFORMANCE COURSE OF ACTION

(COA) VISUALIZATION AIDS

1. Introduction

The human's ability to visualize complex problem spaces is an important part of
both scientific and military lore. Ulysses S. Grant, for example, could not only
visualize minute details of the impending battle area but could actually envision
troop movements and bottlenecks while planning his tactical maneuvers
(McPherson, 1999). The purpose of this research project is to extend this
capability via modern computer technology that symbolically abstracts the most
important features of the battlespace, including the behavior of U.S. and enemy
forces. The research focus is the cognitive and perceptual performance of the
combined human-computer system. To support the research program, the
authors created a specialized software system called "Advanced Battlefield
Architecture for Tactical Information Selection" (ABATIS) (Keane, Rozenblit, &
Barnes, 1997). ABATIS is a three-dimensional (3-D) visualization system that
facilitates rapid, flexible development of high-level battlespace representations as
well as execution and assessment of war-gaming scenarios.

This report discusses recent refinements of the ABATIS system, which will
eventually extend the visualization domain into human-computer research
paradigms via intelligent algorithmic modules. The refinements follow directly
from the meaning of visualization that implies understanding the process and
"end states," not simply presenting finely grained detail of the physical world
(Barnes, 1997). The extensions of ABATIS will allow the quick creation of new
tactical environments, investigation of optimal U.S. and enemy end state
behaviors, and better understanding of the human role in this symbiotic
environment.

Our focus is narrowed to the interplay of tactical decision making, situational
awareness, and the continuous planning process via intelligent aiding. Our
concerns are the cognitive problems associated with visualization and operator
performance in automated planning environments, particularly, in situations
when the planner must address multiple sources of uncertainty. Recent analyses
of automated systems indicate that the extent to which human operators mistrust
or conversely over-rely on automated systems depends on their state of
situational awareness (Parasuraman & Riley, 1997).

The principal issue is the ability of the human to understand enough about the
planning scenario and the behavior of the intelligent systems to make well-
informed supervisory choices without losing insight into the unfolding battle
trends. Intelligent systems can remove the operator from the decision process

and inadvertently create a situation in which the human can no longer react to
new developments. Conversely, the human may not trust the computer solution
and may choose to follow his or her own instincts when they are inappropriate.
We hypothesize that both situations have the same root cause (the inability of the
decision maker to visualize the broader military context while understanding the
implications of the suggested courses of action [COAs] proposed by the
automated system). Using ABATIS, we intend to investigate better visualization
techniques whose purpose is to impart insight as well as suggested decision
options during the planning and re-planning process. Our research goal is a
human-computer synergy that decreases planning time while maintaining the
intuition and insight of the human component through combining the
explanatory power of visualization with the computing power of intelligent
systems. We intend to establish the utility of ABATIS as a research tool and as an
early prototype of a versatile planning and re-planning tool for "brigade-and-
below" applications.

2. Background: Human Performance Issues

2.1 Terrain Visualization

ABATIS supports a 3-D perspective military terrain generator that can be viewed
from multiple angles and perspectives. The 3-D effects are produced by
renderings that depend on perceptual factors such as volume, perspective,
shading, and relative size to produce the desired effects. A variety of issues
related to terrain visualization was investigated by the University of Illinois
researchers (Banks & Wickens, 1999; Wickens, Thomas, Merlo, & Sehchang,
1999). The two principal foci of this research were the effects of visualization
dimensionality and viewpoint. A common assumption among display designers
is that 3-D perspectives are the preferred presentation mode for military terrain
because these perspectives are similar to the natural world. However, converting
3-D information onto a two-dimensional (2-D) display plane introduces
perceptual ambiguity because of foreshortening and resolution losses in the
depth dimension. For example, a number of experiments investigating aircraft
display formats indicate poor resolution in the altitude dimension for air traffic
control tasks whenever the observers were using 3-D as opposed to 2-D
representations (Merwin, O'Brian, & Wickens, 1997). Other problems related to
altitude and azimuth determinations have been noted for navigational tasks that
required 2-D map to 3-D scene translations (Schrieber, Wickens, Goetz, Alton, &
Hickox, 1998).

In an extensive survey of aircraft-related research, Banks and Wickens (1999)
found many cases in, which 2-D display representation was superior to the higher
dimensional representations and vice versa. Based on these findings, they

2

investigated military map problems using U.S. Military Academy cadre as
subjects to investigate the following map tasks: assessing mobility corridors,
relative position judgments, and line-of-sight (LOS) determinations. Again, the
relative advantages of dimensionality were highly task dependent; only the LOS
tasks showed any clear advantage for the 3-D conditions. The other variable that
they investigated was the degree of exocentricity (i.e., the relative distance of the
viewer above the scene). Extreme exocentric conditions involved a bird's eye
view of the terrain, whereas the closer egocentric conditions involved an
immersed view as if the operator were observing the terrain from a low altitude.

In the immersed conditions, the observer could move freely within the terrain
boundaries. The results were similar to dimensionality results in that the
advantages of viewpoint depended on the particular military task and
dependent measure. For example, LOS tasks resulted in more accurate LOS
determinations for immersed views but at the expense of increasing the total
time spent performing the task. In an ensuing study, Wickens, Thomas, Merlo,
and Sehchang (1999) focused on potential cognitive problems associated with
being immersed within the terrain scene. Again, using U.S. Military Academy
cadre, they discovered a cognitive tunneling effect for the immersed condition.
This effect resulted from subjects' inattentiveness to important military events
occurring to their rear in the immersed map environment.

Other researchers investigated similar viewing factors via a more abstract
scientific data visualization paradigm. When the observer was required to
navigate and make relational judgments in 3-D data space (McCormick,
Christopher, Banks, & Yeh, 1998), degree of exocentricity was an important
factor. However, the results were not monotonic; intermediate views (half way
between immersed and bird's eye) actually resulted in slower search
performance than either extreme. Apparently, this view had neither the
advantage of the proximity of the immersed view nor the overall contextual
superiority of the exocentric view. In general, the results followed the expected
pattern: tasks that required local judgments were better supported by immersed
views and those tasks that depended on global cues were better supported by
exocentric views. Wickens, Merwin, and Lin (1994) investigated the effects of
dimensionality on information integration tasks. Three-dimensional
representations resulted in better integration among the cognitive dimensions of
price, debt, and earnings as opposed to 2-D planar representations (requiring
integration over two displays) of the same information. Also, stereopsis (ocularly
induced as opposed to 3-D renderings) aided in information integration.
Interestingly, the 3-D performance gains were not evident during ensuing
memory tasks.

There are three ways to produce 3-D effects: perspective renderings, stereopsis
(based on binocular effects of retinal disparity), and motion induced (Kaiser &
Proffitt, 1992). These 3-D factors act in concert with each cue that contributes to

3

the scene's realism as an additive weighted component (Sollenberger & Milgram,
1993). Stereopsis and motion-induced effects improve performance of certain
tasks (Barfield & Rosenberg, 1995; Yeh & Silverstein, 1992), but they have their
own set of problems that are beyond the scope of this research effort (Mon-
Williams & Wann, 1998; Patterson, Moe, & Hewitt, 1992). Our initial efforts
concentrate on 3-D rendering cues and the results will be used to develop overall
guidelines for the use of viewpoint (viewing angle and immersion factors) and
dimensionality to enhance tactical decision tasks (Barnes & Wickens, 1998). The
results will delineate how best to use the versatility of ABATIS to accurately
portray military scenarios within a process-centered environment.

2.2 Tactical Decision Making

For the most part, this research studied perceptual and cognitive effects related
to situational awareness (Endsley, 1995). ABATIS is being designed to investigate
the synergy between computer visualization and artificial intelligence and their
combined effects on the war fighter's tactical decision making. Other researchers
have concentrated on the soldier performance effects of combining these two
components (Marshak, Winkler, Fiebig, Stein, & Khakshour, 1999), and
important research continues in visualization factors related to soldier immersion
and dimensionality (Wickens, Thomas, Merlo, & Sehchang, 1999). However,
more research needs to be done which focuses on the relationship of human
uncertainty to automation. A recurring problem with automated systems is trust
(Parasuraman & Riley, 1997). In particular, early decision-aiding approaches
tended to be sophisticated in a technical sense but naive in a practical sense;
experts did not know when to trust them.

This lack of understanding of the computational processes of intelligent systems
can lead to two seemingly unrelated system deficiencies: complacency and
mistrust. Both conditions result at least in part from the human viewing the
intelligent algorithm as a separate or even a competing entity. The crucial factor
underlying both mistrust and complacency is the lack of insight by the human
operator as to exactly what it is the machine is doing over some extended period
of time. Unfortunately, the problem is complicated further by the behavioral
characteristics of humans when they reason while in uncertain environments. In
the last 25 years, a seemingly never-ending list of human biases, limitations, and
psychological illusions has been documented in the behavioral decision literature
(Kahneman & Tversky, 1973; Einhorn & Hogarth, 1981; Hollands & Wickens,
1999). The usefulness of probabilities is a controversial subject. In the popular
book "A Civil Action," for example, the evidential propriety of probabilistic
information in general was challenged by the defendant's lawyers (Koehler,
1993). Logically, not assigning a number to an uncertain event does not make it
deterministic, and yet probabilistic evaluations of possible future COAs are
resisted by military leaders for a number of reasons, not the least of which is the
difficulty of generating valid probability values. New systems are being
developed which will generate probabilities for possible intelligence outcomes

4

(Jones et al., 1999; Charles River Analytics, 1998), but the results depend on the
ability of trained analysts to generate accurate probabilities. Again, the basic
issue is trust. The user of intelligence estimates must trust the intelligent
algorithm and the probability elicitation process that feeds the algorithm.

2.3 Poor Calibration of Probability Estimates

The overconfidence phenomena have been documented by a number of
researchers (Sniezek & Buckley, 1993; Hollands & Wickens, 1999). The basic
paradigm is to ask human subjects to answer a general knowledge question and
then state their confidence level. The accurate confidence level should
correspond to the overall percentage correct on the general knowledge test. In
fact, humans tend to be over-confident by 20% to 30% (obtained score - average
confidence level). This phenomenon extends to experts of all types, novices and
college students; weathermen seem to be the one of the few groups that is well
calibrated. Sniezek and Chernyshenko (1998) recently replicated this
phenomenon at the U.S. Army Intelligence Center and Fort Huachuca, Arizona,
by using senior retired intelligence officers. The impact on intelligence estimates
is obvious; senior officers do not like to be wrong, and yet, the numeric
confidence levels they assigned to their answers were consistently overly
confident. The other side of the coin is that the operator's use of probability
estimates displayed on the computer does not always follow prescriptive
decision rules. One such deviation from normative 'behavior is the phenomenon
of probability matching: the tendency of humans to match rather than optimize
probability sequences. This is related to gambler's fallacy and the tendency of the
decision makers to be influenced by previous outcomes for independent events.
An example from one of the author's personal experiences is the tendency of
subjects to override automatic target recognition (ATR) algorithms when it is
inappropriate to do so (their performance was actually less than chance). In this
particular case, the operator tended to match the stated accuracy level of the ATR
as if he or she felt compelled to override the system a certain percentage of the
time even though objectively, the operator performance was quite poor in these
circumstances. The overall research results suggest that the human operator is
poorly calibrated in both using and generating probabilistic information (Barnes,
1979; Hollands & Wickens, 1999). Sniezek and Chernyshenko (1998) have
designed research and training stratagems to alleviate the latter problem; our
research interests are focused on visualization techniques to improve the user's
ability to understand and use probability estimates generated by the computer.

2.4 Confirmation Bias

Many of the biases discovered in the literature are attributable to human
processing limitations (March, 1978). Of particular importance in a military
setting is the sequence of when information is processed and its effect on
decision making. The USS Vincennes incident is a good example of one
manifestation of sequence effects. The initial reading of the screen suggested to
the radar operator that the incoming plane was descending with hostile intent.

Later evidence indicated the aircraft was neutral and ascending, but the action
officer and the commander were looking for evidence of immanent attack, and
thus, the initial decision was amplified rather than contradicted as new
information was received (Hollands & Wickens, 1999). Adelman, Bresnick, Black,
Marvin, and Sak (1996) found a similar overweighing of initial cues for Patriot air
defense officers who were more influenced by the action of the incoming aircraft
if the action was done early in the sequence as opposed to the same objective
pattern with the cues occurring late in the sequence. This seemed to be another
example of the decision maker forming an hypothesis early and favoring cues
that supported the hypothesis while discounting equally valid cues contradicting
it. The problem is more complex than these examples indicate because there are
also cases when the opposite occurs. A number of experiments have
demonstrated a recency effect; cues that are later in the sequence have more
impact than the earlier information even for similar tasks (Adelman & Bresnick,
1992). Hollands and Wickens (1999) argue that the simplicity of the initial cues
and the length of the set of updating cues may explain the difference. In the
Vincennes incident, the hostile hypothesis was generated early and events
occurred quickly. Perhaps in cases when the initial hypothesis is less firmly held
and the intervening information unfolds over a longer time period, recency of
information outweighs the initial direction of the data sequence. It should be
obvious that both instances are valid strategies for overcoming processing
limitations, allowing the observer to concentrate on the most crucial information
rather than be overwhelmed by the constant data stream. Both tactics have
ecological validity. Forming an early hypothesis and collecting data related to the
hypothesis are effective means of handling complex data spaces. In combat,
changing the hypothesis often may be worse than "sticking to your guns" once
you have reached a conclusion unless the disconfirming evidence is strong.

On the other hand, recency effects may be justified in a volatile environment
wherein the initial information is no longer valid. In general, the perceived
validity of intelligence degrades as a function of time. The sequence in which
combat information is received and the early formation of hypotheses concerning
enemy intent are important cognitive factors in explaining the relative
effectiveness of different combat planning conditions. It will be important to
know in particular whether information collected early in the planning process is
assigned too much or too little weight as more recent intelligence is collected.
This particular problem is expected to interact with validity estimates of
intelligence sources and the general problems associated with probability
estimation. Both of these issues will interact with visualization; the more graphic
and compelling the battlespace image, the more likely the user will be to assign
too much weight to probabilistic cues and to prematurely choose a COA that
more recent information may contradict. The challenge is to develop
visualization principles and feedback techniques that impart insight into the
probabilistic nature of the process, including the possibility of abrupt change.
The objective of the ABATIS research environment is to understand the effects of

6

these psychological factors in a rapid planning and re-planning tasking for a
versatile, highly mobile force.

The following describes the general architecture of ABATIS, future extendibility,
and the military context it is being developed to investigate. The overall purpose
of the research project is to determine general design principles for these
situations, which are based on realistic soldier performance and cognitive
parameters.

3. ABATIS

The U.S. military extensively employs simulation-based, virtual training systems
known as computer-generated force (CGF) systems (Hancock, 1994; Karr, Reece,
& Franceschini, 1997). Such systems incorporate live, virtual, and constructive
simulation in high resolution, synthetic environments. The disadvantages of
these systems are the complexity of communication protocols they require when
used in a distributed setting and high communication bandwidth constraint. By
design, they do focus on battlespace abstractions; their goal is to replicate a battle
environment in a computer-based system so that training costs can be reduced.

Examples of systems that share some similarities with our visualization
environment are JANUS(A) and, more recently, commander's intelligent
battlefield information display (CIBID) and virtual geographic information
system (VGIS). JANUS(A) is used by the U.S. Army as an interactive, computer-
based, war-gaming simulation of combat operations conducted at the brigade
and lower levels. It consists of two opposing forces that are controlled by two
interacting players. JANUS(A) concentrates on ground combat. It is composed of
Army-developed algorithms and data to model combat processes. The program
comprises approximately 200,000 lines of legacy code (VAX [virtual address
extension]-11 FORTRAN [Formula Translator], a structured Digital Equipment
Corporation [DEC] extension of American National Standards Institute [ANSI]
standard FORTRAN-77). This aging technology seriously impedes any efforts to
implement the concepts required by the commander's post of the future.

The CIBID software architecture currently being developed by CHI (computer-
human interaction) Systems, Inc. (Graves & Miller, 1998), is a 2-D battlefield
visualization tool that uses object-oriented design principles. Users can work
with digitized maps to create a battle scenario via the existing 2-D Army
symbology. facilities are provided to execute war-gaming scenarios in a model-
based environment.

not an acronym

7

VGIS allows interaction and navigation in very large, high resolution,
dynamically changing databases while retaining real time display (Haus,
Newton, Ribarsky, Faust, & Hodges, 1996). It renders 3-D "realistic" terrain from
an immense database of terrain data. This requires a significant computational
and bandwidth overhead. Although a high degree of terrain realism can be
achieved in VGIS, no 3-D symbology and model libraries are available.

The need is well recognized in the cognitive psychology literature (Barnes, 1997;
Bennett, Toms, & Woods, 1993; Modrick, 1976; Paquet, 1992) for displays that are
process centered and provide innovative visualizations and symbolic content. We
intend to extend these cognitive engineering principles into the realm of 3-D real-
time animated military planning. Our work attempts to meet the following
desiderata for process-centered displays postulated by Barnes (1997): (a) develop
objects that indicate the state of the events being displayed; (b) capture behaviors
and rules of behavior; (c) represent possible end states for current battle trends;
(d) represent process, goal, and environmental indicators; and (e) provide a
means of executing and assessing various war-gaming scenarios.

We now describe the underlying system software architecture, recent
improvements, and the continuous process of upgrading the software to enhance
the ability of ABATIS to incorporate intelligent modules as visualization drivers.
We show a realization of a war-gaming scenario fashioned after FOX-GA
(Schlabach, Hayes, & Goldberg, 1999), a genetic algorithm developed at the
University of Illinois.

4. Software Development

Existing battlefield visualization systems typically exhibit high resolution and
high realism. Their drawback is the lack of flexibility in modifying the
symbology and war-gaming scenarios as well as the high overhead associated
with the communication bandwidth that they require, especially when these
systems are exercised in the intensely collaborative setting where such activities
take place. The awareness of the tactical situation does not require all the details
that such systems attempt to capture.

A number of themes should underlie any new architecture for battlespace
visualization. Most importantly, the architecture must facilitate understanding of
the process of the battle, rather than simply the current location of various forces.
This requirement implies that the system should reflect how the user assimilates
battlespace state information into a process-centered viewpoint. One aspect of
this problem is the assembling of individual units of information into context-

not an acronym

8

rich, higher level composites. Another is the presentation of this derived
information in a way that is intuitive to the human user.

Motivated by these desiderata, the developers created the ABATIS system. Our
key concept in the design of ABATIS is the process-centered display (PCD), a
construct that can display complex, evolutionary processes as well as simple
state changes (Keane, Rozeriblit, & Barnes, 1997).

The main goal of the PCD's design is to convey the processes that are occurring in
the battlespace. Since battlespace processes (e.g., maneuver, attack) evolve and
change as the battle unfolds, the architecture must also support dynamic change
and evolution at "run" time. Given the vast range of possible battlespace
scenarios and objects, the architecture must also be flexible enough to permit the
quick creation of new battlespace objects from old ones.

A secondary goal is to focus on the possibility of using motion, color changes,
"morphing," or other types of animation to convey information. Some uses of
animation are obvious, such as moving a symbol from one location to another.
However, abstract quantities can also be tied to motion. A simple example would
be allowing the strength of a ground force to be represented by the speed of
rotation of its symbol. When done in a way that matches the intuitive notions of
the user, such a presentation of information becomes a metaphor. The metaphor
correlates familiar experiences with the actions of symbols on the computer
display.

A final goal is to allow arbitrary, levels of complexity in both the battlespace
objects and their associated process dynamics. This complexity is needed to
accurately model the intricate dynamics of a real battlespace and its metaphorical
representation. Driven by these goals, the architecture for the ABATIS-PCD is
designed using the object-oriented software design paradigm.

The fundamental design concept of ABATIS is the modularity of display
elements. Terrain and unit elements are represented by symbols (objects)- that can
reside in libraries and can be placed on the display at any location and in any
orientation. As opposed to the traditional paradigm of incorporating attributes
and methods in object descriptions, we specify the behavior of such elements as
distinct, generic entities that can be associated with the battlespace elements.

The process-centered display requires simple, fundamental classes from which
instances of battlespace representations of any complexity can be rapidly
constructed. More specifically, such classes are terrain, unit, behavior, and
information (attributes). Unit objects can be built from elementary graphical
elements (GRELS) (e.g., to construct a 3-D battalion symbol, we can use a
rectangle, diagonals, and two vertical bars). New elements (with a more complex
structure) can be created from the existing elements and can be stored in

9

libraries. Thus, re-use and rapid construction of battlespace instances are
facilitated.

The prototype of the ABATIS design has been implemented on the Silicon
Graphics Octane machine, in the C++ programming language, using the Open
Inventor- development environment. The system's major capabilities are that it
can

1. Load terrain elements, military units, and tactics into a scenario
creation area.

2. Import any 3-D model specified in the Open Inventor TM format.

3. Construct objects from fundamental elements in the object creation
window.

4. Replace a terrain or unit fundamental element.

5. Transfer fundamental elements to the scenario window to location (x,
y,z).

6. Dynamically specify length and width of terrain size and scale objects

and grid size.

7. Attach a behavior to a fundamental element in a scenario window.

8. Animate objects individually or synchronously.

9. Move an object according to a route by specifying a corresponding
path name.

10. Dynamically alter global simulation speed for synchronous motion.

11. Execute a battle scenario by invoking war-gaming logic and assess it
through the notion of configural displays.

5. Development of the Symbolic Battlespace Visualization
Framework

Effective battlespace visualization should portray information in a way that gives
a user the ability to intuitively understand the state of the battle (Barnes, 1997;
Haber & McNabb, 1990; Hancock, 1994; Lehner & Adelman, 1988). We
conceptualize, maneuver, and interact daily in a 3-D world. Thus, it is intuitive to

10

visualize the battlespace in 3-D and demonstrate this intuition by creating
realistic scenarios and empirically measuring combat performance as an integral
part of the ABATIS architecture.

One of the most significant benefits of 3-D visualization is the ability to view
graphical representations of objects from any perspective. Having the capability
to visualize a 3-D object from any angle (length, width, or height) enhances the
understanding of its characteristics. For example, in joint task force planning, it is
necessary to provide a means of depicting air corridors and altitude. These are

* just two simple characteristics that 2-D representations lack. Thus, we anticipate
that semantically rich designs of 3-D abstract symbology will allow the
commanding officers to understand the battlespace more effectively. We
envision an incremental development of concepts, based on the existing
notational standard as well as on research into new ways of information
portrayal. Consider, for example, the traditional mechanized battalion symbol
and its evolution into the 3-D representation shown in Figure 1.

Figure 1. Evolution From 2-D to 3-D Symbology.

The 2-D symbolic representation of a battalion is composed of a square, two
vertical lines, an oval, and an x-shaped symbol. The oval and the x-shaped
symbol are placed inside the square to denote a mechanized unit, while the two
vertical lines' are placed on top of the square to depict a battalion unit. To
translate the 2-D symbol into 3-D, the square is converted into a fundamental
cube element, with the appropriate oval and x-shaped texture to denote a
mechanized battalion unit. The two vertical lines are transformed into two small
3-D pipes. To give the battalion unit a height dimension, a flat cylinder and small
pipe are used. The 3-D symbol is comprised of five separate elements (i.e., the

11

"footprint," the stem, the cube, and two pipes), each of. which could be ascribed
behavior. It is a semantically rich vehicle for information representation.

For example, the footprint could metamorphose to a real ground trace via
navigational data. The stem could show actual command post (CP) locations and
could be used as a barometer display for supply status. The surfaces of the cube
may be used to abstract various types of diverse information (e.g., Side 1 = the
strength of the force; Side 2 = estimated time to destination, etc.).

Attributes can be attached to fundamental elements to signify a particular
property. For example, colors can identify the affiliation of an element via the
military's standard coloring scheme. Other properties can be expressed by the
available graphical elements (e.g., a wire frame representation may indicate that
the object is dead).

In addition to the fundamental unit symbology, we have refined terrain
rendering. Rather than relying on computationally demanding digitalizations
that require considerable storage resources, we provide 3-D abstractions of
terrain elements that can be used to compose the basic terrain for military
scenarios.

The abstract symbology with its relevant behaviors is used to provide
commanders with decision support tools such as dynamic scenario generation
and synchronous battlespace animation. The dynamic scenario generation is
simple and rapid. First, the terrain is composed in the scenario window. Once the
terrain is established, the user can place military units (both friendly and enemy)
at any location within the terrain of interest. A battle scenario can be specified
interactively and enacted by synchronous battlespace animation.

6. Battlespace Scenario Execution and War Gaming: A Model-
Based Approach

To afford decision support, our architecture and its process-centered display
must be driven by battlespace process models capable of rapid enactment and
execution of war-gaming and intelligence scenarios. Our long-term vision of the
architecture is an integrated system that spans a spectrum of processing methods
and underlying physical elements. This design vision is shown in Figure 2. The
architecture given is for a complete system that is capable of processing raw data
and being used to drive the process-centered display. The architecture is
arranged into levels of abstraction and separated into physical and procedural
layers.

12

The physical layers comprise

1. The Database: Intelligence data collected through various sources
(e.g., imagery, human intelligence [HUMINIT], signal intelligence [SIGINT], etc.;
these are "raw" data).

2. The Battlespace Object Clusters: A collection of battlespace objects
abstracted through the process of intelligence production.

3. The Metaphor Object Base: Metaphors are model engines that embody
procedural mechanisms for displaying the battlespace state.

4. The Process-Centered Display: The procedural layers of the
architecture would enable the transitions through the physical levels. Through
intelligence production, data could be clustered, categorized, and amalgamated
into objects that will eventually underlie the metaphors. Knowledge abstraction
and mapping procedures will facilitate this process (i.e., they will provide
mechanisms that should associate metaphors with the battlespace object
clusters). The visualization and process dynamics control is a set of procedures
and rules governing the change of graphical element states on the PCD.

Physical Layers , Procedural Layers

Process
Centered
Display

TVisualization and
Process Dynamics

Metaphor Object
Base

Knowledge Mapping
and Abstraction

Battlespace Object
Clusters

Intelligence
Production

Data

Figure 2. Integrated Battlespace System Architecture.

13

The procedural and physical layers are organized as modular objects that
communicate by sending messages. The source of those messages can be a
simulator or some other existing military software system adapted to that
function. This modularity is intended to enable the PCD to "plug and play" with
other commanders' decision support systems.

The three lowest physical layers are the basis for the construction of a model base
intended to dynamically control the PCD. The lowest level is the raw data as
they are acquired from the battlespace. These data may have many different
formats and may be valid at various times in the past. For example, some data
may be current, while other data may have come from sources that may be an
hour old. Data at this level are relatively unorganized and unstructured.

Through the procedural application of intelligence production, the raw data are
clustered or processed in some other way to produce the first level of abstraction.
Battlespace object clusters are more closely related to the types of objects that
commanders consider when they make tactical decisions. If a conventional user
interface were applied to this level of the model, a display showing battlefield
state but not battlespace processes would result.

Our approach to war gaming is based on COA generation and assessment
concepts by Schlabach, Hayes, and Goldberg (1999). War gaming is the
assessment of how well a specific friendly COA might perform in a battle against
the enemy's COA (Kaiser & Proffitt, 1992). Therefore, as pointed out by
Schlabach (Modrick, 1976), efficient COA generators and evaluators are critically
needed tools that can assist the commander's decision making. The two COA
generators, AirLand Battle Management and Systems for Operations Crisis
Action Planning, do not facilitate assessments of how well the generated COAs
would perform versus the enemy's COAs. The FOX-GA genetic algorithm-based
COA generator and war gamer provides such capabilities. It uses causal
reasoning to war game COA in a variety of scenarios. We plan to employ this
generator in our system as the foundation for dynamic scenario execution. The
FOX algorithm can provide us with the best COA and war-gaming rules, based
upon which simulation model that drives the process-centered display can be
built.

ABATIS is well positioned to interface with a war gamer such as FOX-GA.
Figure 3 illustrates the modular design that facilitates integration with war-
gaming rule bases and terrain and COA databases. Procedures that abstract those
databases from a war gamer can be added.

14

Terl.jcs W [3I I I I

.Zjed.,~

D eehaics.ABATIS Rl~s

Abstac: cenaicsAbstract Rules

",nrp-, (FOX)

Figure 3. Integration of ABATIS With a War Gamer.

As a proof of concept, we have developed initial integration procedures wherein
sample war-gaming logic abstracted from FOX is realized in an illustrative
scenario.

7. An Illustrative Scenario

The scenario developed to support this research is a combined arms brigade
executing a movement to contact mission. It is rather simple and straightforward
in its implementation to allow rapid prototype demonstration of essential
scenario dynamics rather than displaying high density, high resolution
battlespace data.

7.1 The Area of Operations

The National Training Center (NTC), Fort Irwin, California, provides the
geographic and operational setting for this brigade operation. The area of
operations has two avenues of approach able to support multiple battalion
formations. Viewing each from the vantage point of the line of departure (LD),
one avenue of approach on the left allows virtually unrestricted maneuver. The
other includes a significant choke point beyond the LD. Maneuver corridors for
each avenue depict their relative ability to support mobility. There are three lines
of defendable terrain (LDTs) beyond the LD. Friendly unit phase lines
correspond with the LDTs. Each supports reasonable defensive operations by
opposing forces, but there is no dominant key terrain favoring the defense. The

15

nature of the terrain and the mission results in the designation of two battalion
sectors. One corresponds to each maneuver corridor. The battlespace
representation uses abstractions of terrain and man-made features. Certain
terrain features that might appear on a standard military map are not included
because they are not militarily significant. The terrain representation is kept
austere because it will be evaluated for its adaptivity and the utility of its terrain
information content.

7.2 The Friendly Maneuver Force

The brigade includes four battalion task force maneuver elements. Initially, they
are positioned in assembly areas behind the LD. The left avenue of approach is
designated as the brigade main avenue of approach. The right is the supporting
avenue. Two battalions are in the lead echelon on the left with a reserve unit
following in sector. One battalion is assigned to the right sector.

7.3 The Opposing Maneuver Force

The opposing force is defending lightly with a platoon-sized reconnaissance
element at the choke point in the right battalion sector. In the left sector, two
opposing force companies are arrayed along the second LDT. Two companies
and residual forces from earlier positions in the sector will defend their main
defense, which corresponds with the primary objective of the friendly forces.

7.4 The War-gaming Logic

The war-gaming logic is simple and fundamentally doctrinal. It is implemented
to permit activation of basic battlespace dynamics and to demonstrate the
responsiveness of the system to such logic. Attackers are favored whenever their
combat power meets or exceeds 3:1. Combat power is calculated on platoon
counts, not individual weapons or crews. Movement is controlled at
approximately 5 kph when troops are not engaged and 0.5 kph when they are
engaged. Specific attrition is keyed to three levels of relative combat ratios.
Reduction of available forces below 65% triggers rearward movement or
commitment of a reserve, when available.

7.5 Scenario Execution

The demonstration scenario flows smoothly from construction of the operating
environment through friendly unit seizure of the objective. The abstract features
provide excellent awareness of the tactical situation. A static instance of the
scenario (excerpted from the ABATIS process-centered display) is shown in
Figure 4.

16

B'• 10 2 !'

.. ... D ...k 2 ' ...' ; : ." '.. .. ,~ , .. '-:'... " ... ' .

Figure 4. Instance of the Sample Scenario.

8. Summary and Research Issues

Based on the literature, we concluded that distrust of automated and decision
support systems was a ubiquitous problem. Interestingly, we also found
evidence that complacency and over-reliance on computer solutions stemmed
from the same generic problem: lack of understanding of precisely what the
computer is doing. These insights prompted a general research strategy to better
understand the cognitive dimensions of using visualization as an interface
between human and computerized problem solving. If the user understands and
interacts with computerized solutions, then he or she can suggest, contradict, and
if necessary, override computerized solutions. For this to occur, there has to be a
common semantic framework between human and computer (a means of
discourse) before any real synergy is possible. ABATIS is a software environment
being developed to accomplish this by generating visualization concepts that will
create a common semantic framework to forge efficient human-computer
collaboration.

17

A number of important human performance issues must be resolved to expedite
the semantic interface. The two identified as particularly important are effects
attributable to the display of probabilistic information and effects attributable to
cognitive biases, particularly, the confirmation bias. The working hypothesis is
that better visualization methods will lessen the human limitations revealed in
the literature. Better understanding of collaborative human-computer problem-
solving characteristics will result in a semantic visualization environment that
enhances dialogue between these two cognitive entities. The ABATIS
environment will be the focus of our effort to understand this dialogue and to
develop both principles and visualization concepts that will make future
planning and re-planning a faster, easier, and more effective process.

18

References

Adelman, L., & Bresnick, T. (1992). Examining the effects of information
sequence on Patriot air defense officer's judgments. Organizational Behavior
and Human Decision Processes, 53, 204-228.

Adelman, L., Bresnick, T., Black, P.K, Marvin, F.F., & Sak, S.G. (1996). Research
with Patriot air defense officers: Examining information- order -effects.
Human Factors, 38(2) 250-261.

Banks, R., & Wickens, C.D. (1999). Commander's display of terrain information:
Manipulations of display dimensionality and frame of reference to support
battlefield visualization (ARL-CR-445). Aberdeen Proving Ground, MD:
U.S. Army Research Laboratory.

Barfield, W., & Rosenberg, C. (1995). Judgments of azimuth and elevation as a
function of monoscopic and binocular depth cues using a perspective
display. Human Factors, 37(1), 173-181.

Barnes, M.J. (1979). Operator decision making characteristics (Technical
Publication6124). China Lake, CA: Naval Weapons Center.

Barnes, M.J. (1997). Process centered displays and cognitive models for
command applications. Proceedings of the IEEE International Conference
and Workshop on Engineering of Computer-Based Systems (pp. 129-135).
Monterey, CA.

Barnes, M.J., & Wickens, C.D. (1998). Battlespace visualization: A multi-view
approach. Proceedings of the 2nd Federated Laboratory Symposium (pp. 1-
5). College Park, MD.

Bennett, K.B., Toms, M.L., & Woods, D.D. (1993). Emergent features and
graphical elements: Designing more effective configural displays. Human
Factors, 35(1), 71-97

Charles River Analytics (1998). Briefing on intelligent information management
algorithms. Cambridge MA: Author.

Einhorn, H.J., & Hogarth, R.M. (1981). Behavioral decision theory. Annual
Review of Psychology, 32, 53-88.

19

Endsley, M.R. (1995). Towards a theory of situation awareness in dynamic
systems. Human Factors. 37(1) 32-64.

Graves, K., & Miller, D. (1998). Commander's intelligent battlefield information
display (CIBID). SBIR briefing by CHI Systems, Inc., at the University of
Arizona.

Haber, R.B., & McNabb, D.A. (1990). Visualization in scientific computing. In G.
M. Nielson & B. Shriver (Eds.), Visualization idioms: A conceptual model for
scientific visualization systems (pp. 74-93). Los Alamitos, CA: IEEE
Computer Society Press.

Hancock, W.R. (1994). Meeting the graphical needs of the electronic battlefield.
Proceedings of the 13th Digital Avionics Systems Conference, AIAA/IEEE (pp.
465-470).

Haus, J., Newton, G., Ribarsky, W., Faust, N., & Hodges, L. (1996). 4D
symbology for sensing and simulation. Proceedings of the International
Society for Optical Engineering. Orlando, FL.

Hollands, J., & Wickens, C.D. (1999). Engineering psyhology and human
performance (3rd ed.). New York: Prentice Hall.

Jones, P.M., Wilkins, DC., Bargar, R., Sniezek, J., Asaro, P., Kesseler, D., Lucenti,
M., Choi, I., Chernyshenko, 0., Hayes, C.C., Tu, N., Liang, M., & Schlabach, J.
(1999). CoRAVEN: Modeling and design of a multimedia intelligent
infrastructure for collaborative intelligence analysis. Proceeding of the 3rd
Federated Laboratory Svmposium (pp. 3-7). College Park, MD.

Kahneman, D., & Tversky, A. (1973). On the psychology of prediction.
Psychological Review, 80, 237-251.

Kaiser, M.K., & Proffitt, D.R. (1992). Using the stereokinetic effect to convey
depth: Computationally efficient depth-from-motion displays. Human
Factors, 34(5), 571-581.

Karr, C.R., Reece, D., & Franceschini, R. (1997). Synthetic soldiers. IEEE
Spectrum 39-45.

Keane, J.S., Rozenblit, J.W., & Barnes, M.J. (1997). The advanced battlefield
architecture for tactical information selection (ABATIS). Proceedings of the
IEEE International Conference and Workshop on Engineering of Computer-
Based Systems (pp. 228-237). Monterey, CA.

20

Koehler, J.J. (1993). The nolmative status of base rates in jury trials. In N. J.
Castellan, Jr., (Ed.), Individual and Group Decision Making (137-149).
Hillsdale, NJ: Erlbaum.

Lehner, P.E., & Adelman, L. (1988). Senior battle staff decision aiding. A case
study. In S. J. Andriole & G. W. Hopple (Eds.), Defense applications of
artificial intelligence (pp. 153-166). Lexington, MA: Lexington Books.

March, J.G. (1978). Bounded rationality, ambiguity and the engineering of
choice. Bell Tournal of Economics 587-608.

Marshak, W.P., Winkler, R., Fiebig, C., Stein, R., & Khakshour, A. (1999).
Evaluating intelligent aiding in course of action decisions using Fox genetic
algorithm in 2-D and 3-D interfaces. Proceedings of the 3rd Federated
Laboratory Symposium (pp. 27-31). College Park, MD.

McCormick, E.P., Christopher, C.D., Banks, R. & Yeh, M. (1998). Frame of
reference effects on scientific visualization subtasks. Human Factors, 40(3),
443-451.

McPherson, P. (1999). The character of Ulysses S. Grant. Lew -York Review of
Books.

Merwin, D.H., O'Brian, J.V., & Wickens, C.D. (1997). Perspective and coplanar
representation of air traffic: Implication for conflict and weather avoidance.
Proceedings of the 9th International Symposium on Aviation .Psychology (pp.
22-86).

Modrick, J.A. (1976). Decision support in a battlefield environment. In C. P.
Tsokos & R. M. Thrall (Eds.), Decision information (pp. 457-471). New York:
Academic Press.

Mon-Williams, M., & Wann, J.P. (1998). Binocular virtual reality displays: When
problems do and don't occur. Human Factors, 40(1), 42-49.

Paquet, L. (1992). Global and local processing in non-attended objects: A failure
to induce local processing dominance. Tournal of Experimental Psychology:
Human Perception and Performance, 18(2).

Parasuraman, R., & Riley, V. (1997). Humans and automation: Use, misuse,
disuse and abuse. Human Factors, 39(2), 230-253.

Patterson, R., Moe, L., & Hewitt, T. (1992). Factors that affect depth perception in
stereoscopic displays. Human Factors, 34(6), 655-667.

21

Schlabach, J.L., Hayes, C., & Goldberg, D. (1999). SHAKA-GA: A genetic algorithm
for generating and analyzing battlefield courses of action. Evolutionary
Computation.

Schrieber, B.T., Wickens, C.D., Goetz, J.R., Alton, J.D., & Hickox, J.C. (1998).
Navigational checking using 3-D maps: The influence of elevation angle,
azimuth, and foreshortening. Human Factors, 40(2), 209-223.

Sniezek, J., & Buckley, P. (1993). Becoming more or less uncertain. In N.J.
Castellan, Jr., (Ed.), Individual and group decision making (pp. 81-107).
Hillsdale NJ: Erlbaum.

Sniezek, J., & Chernyshenko, 0. (1998). Investigation of subjective probability
estimates of military intelligence officers. Unpublished manuscript,
University of Illinois, Champaign, IL.

Sollenberger, R.L., & Milgram, P. (1993). Effects of steroscopic and rotational
displays in a three-dimensional path-tracing task. Human Factors, 35(3), 483-
499.

Wickens, C.D., Merwin, D.H., & Lin, E.L. (1994). Implications of graphics
enhancements for the visualization of scientific data: Dimensional integrality,
stereopsis, motion, and mesh. Human Factors, 36(1) 44-61.

Wickens, C.D., Thomas, L., Merlo, J., & Sehchang, H. (1999). Immersion and
battlefield visualization: Does it influence cognitive tunneling. Proceedings
of the 3rd Federated Laboratory Symposium (pp. 111-115). College Park,
MD.

Yeh, Y.Y., & Silverstein, L.D. (1992). Spatial judgments with monoscopic and
stereoscopic presentations of perspective displays. Human Factors, 34(5),
583-600.

22

NO. OF NO.OF
COPIES ORGANIZATION COPIES ORGANIZATION

ADMINISTRATOR I US ARMY
DEFENSE TECHNICAL INFO CTR ATTN AVA GEDDES
ATTN DTIC OCA MS YA:219-1
8725 JOHN J KINGMAN RD MOFFETT FIELD CA 94035-1000
STE 0944
FTBELVOIR VA 22060-6218 1 DR NORMAN BADLER

DEPT OF COMPUTER &
DIRECTOR INFORMATION SCIENCE
US ARMY RSCH LABORATORY UNIV OF PENNSYLVANIA
ATN AMSRL CS AS REC MGMT PHILADELPHIA PA 19104-6389
2800 POWDER MILL RD
ADELPHI MD 20783-1197 1 HUMAN FACTORS ENG PROGRAM

DEPT OF BIOMEDICAL ENG
DIRECTOR COLLEGE OF ENGINEERING &
US ARMY RSCH LABORATORY COMPUTER SCIENCE
ATTN AMSRL CI LL TECH LIB WRIGHT STATE UNIV
2800 POWDER MILL RD DAYTON OH 45435
ADELPHI MD 207830-1197

1 COMMANDER
OUSD(A)/DDDR&E(R&A)/E&LS MARINE CORPS SYSTEMS CMD
PENTAGON ROOM 3D129 ATTN CBGT
WASHINGTON DC 20301-3080 QUANTICO VA 22134-5080

I CODE 1142PS 1 HQ III CORPS & FT HOOD
OFFICE OF NAVAL RESEARCH OFFICE OF THE SCIENCE ADVISER
800 N QUINCY STREET ATTN AFZF CS SA

,ARLINGTON VA 22217-5000 FORTHOOD TX 76544-5056

DPY COMMANDING GENERAL I MS DIANE UNGVARSKY
ATTN EXS(Q) HHC 2BDE lAD
MARINE CORPS RD&A CMD UNIT 23704
QUANTICO VA 22134 APO AE 09034

HEADQUARTERS USATRADOC 1 ENGINEERING PSYCH LAB
ATTN ATCD SP DEPT OF BEHAVIORAL
FORT MONROE VA 23651 SCIENCES & LEADERSHIP

BUILDING 601 ROOM 281
AIR FORCE FLIGHT DYNAMICS LAB US MILITARY ACADEMY
ATTN AFWAL/FIES/SURVIAC WEST POINT NY 1.0996-1784
WRIGHT PATTERSON AFB OH 45433

DR SEHCHANG HAH
ARI FIELD UNIT FORT KNOX WM J HUGHES TECH CTR FAA
BUILDING 2423 PERI IK NAS HUMAN FACTORS BR
FORT KNOX KY 40121-5620 ACT-530 BLDG 28

ATLANTIC CITY INTNATL
STRICOM AIRPORT NJ 08405
12550 RESEARCH PARKWAY
ORLANDO FL 32826-3276

23

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

US MILITARY ACADEMY 1 ARL HRED FT HOOD FIELD ELMT
MATH SCIENCES CTR OF ATTN AMSRL HR MV HQ USAOTC

EXCELLENCE (E SMOOTZ)
DEPT OF MATH SCIENCES 91012 STATION AVE ROOM II1
ATTN MDN A MAJ M D PHILLIPS FT HOOD TX 76544-5073
THAYER HALL
WEST POINT NY 10996-1786 15 ARL HRED FT HUACHUCA FLD ELMT

ATTN AMSRL HR MY (M BARNES)
ARL HRED AVNC FIELD ELEMENT GREELY HALL BLDG 61801 RM 2631
ATTN AMSRL HR MJ (R ARMSTRONG) FT HUACHUCA AZ 85613-5000
PO BOX 620716 BLDG 514
FT RUCKER AL 36362-0716 1 ARL HRED FLW FIELD ELMT

ATTN AMSRL HR MZ
ARL HRED AMCOM FIELD ELMT (A DAVISON)
ATTN AMSRL HR MI (D FRANCIS) 3200 ENGINEER LOOP STE 166
BUILDING 5678 ROOM S13 FT LEONARD WOOD MO 65473-8929
REDSTONE ARSENAL AL 35898-5000

1 ARL HRED NATICK FIELD ELMT
ARL HRED AMCOM FLD ELEMENT ATIN AMSRL HR MQ M (R FLETCHER)
ATTN ATTN AMSRL HR MO (T COOK) NATICK SOLDIER CTR BLDG 3 RM 341
BLDG 5400 RM C242 AMSSB RSS E
REDSTONE ARS AL 35898-7290 NATICK MA 01760-5020

ARL HRED USAADASCH FLD ELMT I ARL HRED OPTEC FIELD ELMT
ATTN AMSRL HR ME (K REYNOLDS) ATTN AMSRL HR MR (M HOWELL)
ATTN ATSA CD ATEC CSTE OM
5800 CARTER ROAD PARK CENTER IV RM 1040
FORT BLISS TX 79916-3802 4501 FORD AVENUE

ALEXANDRIA VA 22302-1458
ARL HRED ARDEC FIELD ELMT
ATTN AMSRL HR MG (R SPINE) 1 ARL HRED SC&FG FIELD ELMT
BUILDING 333 ATIN AMSRL HR MS (C MANASCO)
PICATINNY ARSENAL NJ 07806-5000 SIGNAL TOWERS RM 303A

FT GORDON GA 30905-5233
ARL HRED ARMC FIELD ELEMENT
ATTN AMSRL HR MH (C BIRD) 1 ARL HRED STRICOM FLD ELMT
BLDG 1002 ROOM 206B ATTN AMSRL HR MT (A GALBAVY)
FT KNOX KY 40121 12350 RESEARCH PARKWAY

ORLANDO FL 32826-3276
ARL HRED CECOM FIELD ELMT
ATTN AMSRL HR ML (J MARTIN) I ARL HRED TACOM FLD ELMT
MYER CENTER RM 2D311 ATYN AMSRL HR MU (M SINGAPORE)
FT MONMOUTH NJ 07703-5630 BLDG 200A 2ND FLOOR

WARREN MI 48397-5000
ARL HRED FT BELVOIR FIELD ELMT
ATTN AMSRL HR MK (P SCHOOL) 1 ARL HRED .USAFAS FLD ELMT
10170 BEACH ROAD ROOM 12 ATTN AMSRL HR MF (L PIERCE)
FORT BELVOIR VA 22060-5800 BLDG 3040 RM 220

FORT SILL OK 73503-5600

24

NO. OF
COPIES ORGANIZATION

I ARL HRED USAIC FLD ELMT
ATTN AMSRL HR MW (E REDDEN)
BLDG 4 ROOM 332
FT BENNING GA 31905-5400

1 ARL HRED USASOC FLD ELMT
ATTN AMSRL HR MN (F MALKIN)
HQ USASOC BLDG E2929
FORT BRAGG NC 28310-5000

I ARL HRED HFID FLD ELMT
ATTN AMSRL HR MP DR A KARRASCH
C/O BATTLE CMD BATTLE LAB
415 SHERMAN AVE UNIT 3
FORT LEAVENWORTH KS 66027-2300

ABERDEEN PROVING GROUND

2 DIRECTOR
US ARMY RSCH LABORATORY
ATfN AMSRL CI LP (TECH LIB)
BLDG 305 APG AA

I LIBRARY
ARL BLDG 459
APG-AA

I ARL HRED ECBC FLD ELMT
ATTN AMSRL HR MM (R MCMAHON)
BLDG 459
APG-AA

ABSTRACT ONLY

1 DIRECTOR
US ARMY RSCH LABORATORY
ATTN AMSRL CS EA TP TECH PUB BR
2800 POWDER MILL RD
ADELPHI MD 20783-1197

25

ITrENTIONALLY LEFT BLANK

26

REPOT DCUMNTATON AGEForm Approved
REPOT DOUMENATIO PAG -7 OMB No. 0704-0188

Pub0lic reporting burden for this collection of Information Is estimated to average 1 hour per respons'e including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the colleCtion of infomation Sendcomments rgarding this burden estimate or any other aspect of this
collection of information, Including suggestions for reducing this burden, to Washington Headquarters Senaices, Directorate tor Information Operations end Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 2000 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Soldier Performance Course of Action (COA) Visualization Aids AMS: 622716.H700011
PR: 1L162716AH70

6. AUTHOR(S) PE: 6.27.16
Rozenblit, J.W. (Univ of AZ); Barnes, M.J. (ARL); Momen, F.; Quijada, 3. A. (both of Univ of
AZ); Fichtl, T. (Compass Foundation) Contract No. DAADI7-99-P-0203

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

University of Arizona REPORT NUMBER

Electrical & Computer Engineering Dept
1230 E. Speedway Blvd.
Tucson, AZ 85721

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

U.S. Army Research Laboratory AGENCY REPORT NUMBER

Human Research & Engineering Directorate ARL-CR-302
Aberdeen Proving Ground, MD 21005-5425

11. SUPPLEMENTARY NOTES
The contracting officer's representative (COR) is Michael Barnes, U.S. Army Research Laboratory, ATTN: AMSRL-HR-MY,
Greely Hall, Bldg 61801, Ft. Huachuca, AZ 85613-5000 (telephone 520-538-4704).

12a. DISTRIBUTION/AVAILABILITY STATEMENT 1 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The computer revolution has resulted in extending the possibilities of battlespace visualization to the brigade commander and
below. However, mobility and bandwidth considerations require that the systems be efficient to reflect the realities of modem
combat. The Advanced Battlespace Architecture for Tactical Information Selection (ABATIS) is being developed to be a rapid
planning and re-planning experimental environment. ABATIS's object-oriented architecture has the advantage of being able to
rapidly construct a three-dimensional battlespace that will accurately represent the essential planning components of a brigade
and smaller division battle environment. The basic architecture has been extended to include war-gaming logic as part of the
software design, and examples are given that pertain to specific military problems. This capability will allow ABATIS to
realize fully the implications of battlespace visualization by creating a human-computer synergy that encourages both human
and machine to generate and evaluate possible courses of action and their consequences. The human performance implications
are discussed, and particular attention is directed toward research issues related to terrain visualization, automation, decision
making, and cognitive biases.

14. SUBJECT TERMS 15. NUMBER OF PAGES

battlespace visualization human decision making terrain visualization 30

course of action analysis intelligent systems 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified II
Standard Form 298 (Rev. 2-89)

NSN 7540-01-280-5500 Prescribed by ANSI Std. Z39-18 27
298-102

THIS PAGE INTENTIONALLY LEFT BLANK

DOCUMENT 2

An Intelligent Training Management System
(ITMS)

AD-A373078

January 2000

Stottler Henke Associates, Inc.
San Mateo, CA

3

THIS PAGE INTENTIONALLY LEFT BLANK

An Intelligent Training Management System (ITMS)
Richard Stottler

Final Technical Report

January 28, 2000

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Stottler Henke Associates, Inc. (SHAI)
1660 So. Amphlett Blvd., Suite 350

San Mateo, CA 94402
(650) 655-7242

o 0ooOq 0 083

REPORT DOCUMENTATION PAGE 1 Form Approved
SMB No. 0704-0188

Public reporting burden for this collection of information Is estimated to average I hour per response. Including the time for reviewing Instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information. Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project(0704.0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
January 28, 2000 Final Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
An Intelligent Training Management System (ITMS)

F41624-99-C-6022

8. AUTHORS
Richard Stottler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Stottler Henke Associates, Inc. No. 194: ITMS Final Report
1660 South Amphlett Blvd., Suite 350
San Mateo, CA 94402

9. SPONSORING/MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING/MONITORING AGENCY
Air Force Research Laboratory/AFRHEAI REPORT NUMBER
Further Marked For. Terresa E. Jackson
2504 Gillingham Dr., Bldg. 170, Suite 25
Brooks AFB. TX. 78235-5100

11. SUPPLEMENTARY NOTES
NONE

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Report developed under SBIR contract for topic number AF99-097. Air Force training units are in extreme need of advanced, Intelligent
training management systems to aid the training managers and schedulers In the performance of their duties and to help students
quickly advance in their careers and meet the training requirements. The intelligent training management system (ITMS), to be
implemented and used In Phase II, will address tracking, evaluation, requirements identification, scheduling, and completion and
certification management of Individuals and teams. The ITMS will perform the functions that a person dedicated to managing the
training of a small group of students would perform, but do It automatically. it will Intelligently guide the students as to their training
needs and opportunities and help with the development, delivery, scheduling, and evaluation of courses and other training events. The
ITMS intelligently models the skills and knowledge mastered by the student and makes intelligent proactive decisions and notifications
based on that model. It also provides intelligent courseware tracking, evaluation, and configuration control. After determining training
requirements, it intelligently schedules the required resources. The ITMS Is a general tool which can be easily customized to specific
domains by end-users. Several sites will use the ITMS operationally In Phase II to provide feedback and a basis for follow-on
commercialization.

14. SUBJECT TERMS 15. NUMBER OF PAGES
SBIR Report, Training Management, Intelligent Scheduling, Artificial Intelligence, Team Training, 83

Intelligent Decision-making, Data-Mining, Intelligent Training Management, Student Modeling 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

Stottler Henke Associates, Inc. Phase I Final Report

Table of Contents

1.0 Summary.. 4
2.0 Problem Description ... 5
3.0 Solution Overview.. 11
4.0 System Description... 14

4.1 ITMS Architecture... 14
4.2 ITMS Design ... 15
4.3 Functionality ... 23
4.4 Innovations... 26

5.0 Existing Training Management Systems.. 27
6.0 Future Work.. 28

6.1 Phase 11.. 28
6.2 Potential Applications ... 28

7.0 References 31
Appendixes
Appendix A. Phase I Prototype Design ... 33

A. 1 ITMS Architecture... 33
A.2 ITMS Skill Graph Structure... 34
A.3 ITMS GUI ... 34
AA4 ITMS classes and data structures (lisp application).............................. 36

Appendix B. Phase I Prototype User Guide .. 41
B.1I ITMS GUI Guide... 41
B.2 ITMS Web Interface Guide.. 43

Appendix C. Phase I Prototype Demonstration Sequence 46
C.1I Installation instructions.. 46
C.2 Notes ... 46
C.3 Webpage outside firewall: httli://207.2 14.202. 162/c~gi-bin/main.cii.................. 46

Appendix D. Demonstration Sequence (Screen Dumps) 49

3

Stottler Henke Associates, Inc. Phase I Final Report

1.0 Summary

In our Phase I project we accomplished all of the objectives listed in the Phase I
proposal. Perhaps most important was the fact that we proved the feasibility of the concepts
described throughout this final report in a prototype, which implemented functionality in most
of the areas envisioned by the Phase II design included herein. For example, it had an E-mail
interface and could send students proactive notifications through E-mail. It modeled the
students general and specific skills using a skill hierarchy which could be edited by users and
included both the more specific and subtask relationships. Users could edit the course
descriptions, which included different versions for the same course. The course descriptions
included prerequisite skills required and the skills developed (learning objectives) by the
course along with minimum computer requirements.

The ITMS ran on a web server and wrote relevant information to the appropriate web
pages. When a new version was created, a student who had taken the old version would be
notified both through E-mail and through a web page tailored to the specific student. The
prototype ITMS would notify students when they we're falling behind or when their skills had
decayed. It would automatically E-mail them questionnaires after they took a course and
expect a response in a reasonable amount of time. This time expired the student was
reminded until eventually his supervisor was notified via E-mail.

Users could edit job descriptions and edit the career map, graphically specifying
prerequisite relationships. This information was used to provide career counseling to students
on their own web page. This included determining if the goals were realistic and determining
what course the student needed to take and in what order. If the student's existing skills didn't
meet those required as prerequisites for a course, the prototype would search for additional
courses that the student was eligible for that would allow him to reach the required skill
levels.

The prototype even had permission management capabilities. Students or instructors
could be individually authorized with passwords and each had privileges appropriate to their
class. The prototype would also evaluate courses based on the data that it had from students,
supervisors, and the course results. This was a simple version of the algorithms described in
Section 3.

The design for the phase II system, and therefore for the prototype, whose primarily
role was to prove that design's feasibility, was based on interviews with operational experts in
the training management process. Our first discussions were with various Air Force officers
with AWACS team training management responsibilities at Tinker AFB in Oklahoma. We
also received and analyzed documents relating to the complex training requirements relating
to aircrew (especially pilot) training. We also had discussions with the several individuals
with training management responsibilities at the Army's military intelligence distance learning
center at Fort Huachuca, Arizona. Finally we confirmed that the Navy's needs paralleled the
Air Force's and Army's through discussions with Commander Pinto, XO of the USS Paul
Hamilton.

4

Stottler Henke Associates, Inc. Phase I Final Report

2.0 Problem Description

The Department of Defense' (DOD's) training requirements are changing, primarily
because the jobs that DOD personnel do are changing. More thinking is required of all
military personnel at all levels, primarily problem-solving - thinking through difficult
problems. These changes are a result of "the new world order." That is, with the end of the
cold war, the US faces asymmetric threats (enemies with far less capability than itself). Low
intensity conflicts and military operations other than war (MOOTW) are more the norm than
the exception. These lead to unpredictable situations and ill-structured problems. These
circumstances require a higher degree of flexibility in the individuals.

Additionally, there is a much greater number of these asymmetric threats. During the
Cold War we faced one, or possibly a few, credible threats with known doctrine. This could
be studied and tactics developed, in advance, to counter likely enemy actions. But now, with
hundreds or thousands of possible threats, many only vaguely known or even completely
unknown, it is impossible to study or understand all the possible adversaries, their
capabilities, doctrine, and tactics. Thus, it is impossible to design appropriate responses to
their actions in advance and train our military personnel in those actions. Given the unknown
nature and behavior of the threats, cognitive flexibility of our forces is paramount.

The world continues to rapidly evolve in other ways as well. Equipment rapidly
changes - both those in use by our own forces and those used by potential threat forces. New
software versions used by our forces may be updated multiple times per year. It is impractical
to retrain our military personnel in the specific capabilities of a new equipment (either
equipment of ours or possessed by potential threat forces) every time it changes. Rather our
personnel need to have the general abilities to adapt to new equipment, without retraining
each time. Their original training should not be for specific equipment, but rather how to
understand the new capabilities, on their own.

Because the requirements of military jobs have changed, the training for those jobs
must change. For example, there is already less emphasis on training specific procedures,
preprogrammed reactions, doctrinal rules, rote memorization, and behaviorist training
approaches. More emphasis is already being placed on training in the context of scenarios.
That is, training is being conducted by practicing for a variety of situations. There are several
theories of learning that relate to training with scenarios. These include Situated learning,
Anchored instruction, Scenario-based training, Simulation-based learning, Case-Based
instruction, constructivist theory, and several others. Many of these place explicit emphasis
on the notion of training more abstract, general, problem solving skills and less emphasis on
specific, concrete procedures and tasks. Because these training strategies embody more
complex methods of instruction, and because there is a greater emphasis on more general (and
subtle) skills, more complex tracking of student training is required. It is not enough to
simply know which student took which course, because two different students may have had
widely varying experience in the same course, and evaluating and tracking general problem
skills requires more sophistication. It is not enough to simply track which course a student

5

Stottler Henke Associates, Inc. Phase I Final Report

took or even which of his responses were correct and incorrect. Instead a system must
evaluate and track his mastery of both specific and general skills and knowledge.

It should be noted that we have a very general definition for the term "course" as used
herein. A course is any defined learning experience or training event and includes Distance
Learning, correspondence courses, residence courses, on-site training, training sorties,
simulator training, on-the-job training, etc.

The DOD training situation is also changing. Training budgets are being radically
reduced. This is forcing training units to radically reduce or eliminate school house course
lengths. This training is being replaced with distance learning alternatives, either as optional
training or as explicit prerequisites for other courses, jobs, or promotions. The new
courseware being produced to fill this void varies widely in terms of level of sophistication
and pedagogy, depending on who is developing it.

The DOD also has very unique training (and training management) requirements. The
training is often life-critical with complex, time constrained, high-value decision-making.
The training requirements regulations are very complex. There is a need to provide just-in-
time training which is specific to a particular mission or geography. Finally, the DOD has
begun to appreciate the importance of managing the training of its personnel across their
entire career - the Life Long Learning concept. This leads to very long student tracking
times.

Many of these problems specific to the DOD are exasperated by the specific needs of
Air Force aircrew team training. Air Force training units are in extreme need of advanced,
intelligent training management systems. As warfare has gotten more complex (technology
and tactics), Air Force training requirements have increased. But at the same time, Air Force
training budgets have been reduced. This is true for both initial and sustainment training of
active duty, guard, and reserve personnel. Training which includes academic schools,
simulators, flight, on-the-job training and distance leaming courseware, are all affected and in
need of a new generation of training management systems.

The reduced budgets and increased requirements have forced training units to do more
with fewer resources. Optimal utilization of these scarce resources has become more
important. This has significantly increased the importance, complexity, and difficulty of
scheduling training events. Even after a good schedule is developed, it is subject to many
dynamic events and constant rescheduling is the norm. This occurs for several reasons
including weather (not acceptable for training requirements), lost resources (equipment breaks
or is re-allocated), trainees becoming unavailable, etc.

Determining the training requirements for individuals is also complex. This is because
the regulations governing training are so complex and any one individual is subject to many
different regulations. For example, some training, such as small arms training, is required of
all Air Force Personnel. Other training requirements apply to all air crews, such as altitude
chamber training. Additionally, pilots (who are also subject to the requirements for air crews
and all personnel) must stay current on the relevant air platforms or they will require refresher

6

Stottler Henke Associates, Inc. Phase I Final Report

training. As this example shows, any particular individual may be subject to many separate
requirements. Furthermore, many of these regulations have complex periodicity rules. For
example, a pilot may be required to log a certain number of flight hours each month, without
too great a period of time transpiring between flights. Missing the month target may then
activate the 90 day minimum requirements. Depending on the degree of the deficit, there will
be different training requirements to make the pilot current again.

With each individual having to meet so many and such a complex array of
requirements, tracking which requirements have actually been met is also difficult. Not every
student attends every event for which he is scheduled. Thus, the "as-attended" record of the
training events must be used.

These problems are further exacerbated for the many team training domains. An
AWACS aircrew has about 18 positions. Thus, 18 different trainees have to be scheduled for
most AWACS training events. Most of these fall into different categories, each with its own
unique training requirements. Additionally, several different types of instructors have to be
scheduled, who have their own training requirements to meet in order to be acceptable as
instructors and to be allowed in the air. In the AWACS domain, non-AWACS aircraft, which
are under control of different units altogether, must also be scheduled for most airborne
training events. These aircraft may or may not have symmetric training requirements. For
example, while tanker aircrews have training requirements relating to practicing with
AWACS crews, and are thus relatively easy to negotiate schedules with, fighters have no such
requirement. That is, while the AWACS Weapons Directors (WDs) have a training
requirement to control fighters in various airborne scenarios, the fighters have no
corresponding training requirement to be controlled. They can be very difficult to schedule.

These training management problems are especially difficult for reservist and guard
units, whose members have full-time jobs. They are not available every day. Furthermore, on
occasion, something happens at the trainee's job which prevenis him from making his
scheduled Air Force training event, sometimes with little or no notice.

We have spoken to several different individuals involved with the training
management problems for various units who train out of Tinker AFB in Oklahoma. All were
very informative and eager to help and provide many useful examples of current problems,
some of which are described below.

An example from the reservist AWACS domain helps illustrate the training
management problems. One of our contacts proposes that scheduling AWACS reservist
sorties is one of the hardest training management tasks in the Air Force. First, he has to
coordinate the individual schedules of the trainees manning the 18 separate positions, each of
whom has another full-time job, which creates additional scheduling constraints. These jobs
make the typical 8-12 hour active duty AWACS sortie length impractical. So the sortie length
is generally reduced to 6 hours. Furthermore, the trainees are only available at certain times
during the week. These problems are magnified by 6 since he is in charge of scheduling for 6
different teams. He then has to coordinate his training sorties with fighter training sorties in
the area. The fighters fly in several different profiles, many of which generate no events, and

7

Stottler Henke Associates, Inc. Phase I Final Report

therefore, no training for the AWACS crew. So he must piggy back his AWACS sortie onto
fighter sorties who are scheduled to fly the correct types of missions. Finding these is a
difficult problem since the fighters can more easily fulfill these certain profile training
requirements using ground controllers endemic to their units.

Even after this complex schedule of sorties is worked out, problems often materialize.
It is common for the fighters to cancel their sorties with 12 to 24 hours notice. In order to
preserve the training sortie and reservists training schedules, the scheduling team then quickly
scrambles to find alternate fighter training sorties. Usually they call units in a four to five
hundred mile radius. They typically call fighter reserve units first. This is for two reasons.
The fighter reserve units can be more understanding of the special needs and problems of
other reservists. Secondly, since reservists tend to be more experienced than their active duty
counterparts, they make fewer mistakes, so the fighter reservists prefer to train with AWACS
reservists. About 75% of the time, they are successful in finding alternate reservist fighters to
be controlled. The next fall back is to try to coordinate with active duty fighter training. The
final fall back is to perform only surveillance training. That is, there are some training
requirements for some of the AWACS crew that can be fulfilled by using the onboard sensors
to monitor commercial air traffic. But certainly, weapons directors fulfill no requirements in
this final fall back mode of training. Because of these problems and issues, maintaining the
training sortie schedule for 6 AWACS crews requires 4-5 full time schedulers.

The most time-consuming aspect of their jobs relates to creating the schedule and
disseminating it (and the frequent changes and updates) to the wide variety of individuals
involved. In addition to the many people directly involved in the training (trainees,
instructors, pilots, etc.), there are a large number of people not directly involved who also
must be notified. For example, the maintenance unit, who is otherwise not involved in the
training, must be notified so that they will be available and so that the equipment is available.

Another Tinker AFB contact was in charge of the training management for about 25
AWACS Weapons Director reservists. This requires about 30 hours per week. Her first
problem is determining the training required for each individual. This is complicated by
several factors. First, an Air Force wide automated system keeps track of each individual's
flight hours. Unfortunately, there is a two step entry process, where the trainee fills out a
form which must be entered by someone else. Occasionally, this is not done correctly, and
the error is usually not uncovered for several months or longer. By that time, it is often
difficult to remember or reconstruct which flights which trainees were on. Furthermore, as
alluded to earlier, the regulations which describe what the training requirements are, are
themselves complicated. Keeping track of how often different recurrent training must be
done (whether quarterly, yearly, every 2 years, every 6 months, etc.) and matching those to
each individual is difficult. Flying requirements are more complicated, requiring a certain
number of days per month, without too long between flights and fall back requirements
spanning 90 days. Again these must be applied to each individual. The result is a
complicated array of training events for each trainee which includes such diverse items as life
support training, chemical warfare instruction requiring special equipment, altitude chamber
training, academic training, simulator training, training sorties, etc.

8

Stottler Henke Associates, Inc. Phase I Final Report

Once the events each trainee needs are determined, significant difficulties remain.
Scheduling of training events occurs in a distributed manner. For example, the AWACS
training manager (managing the training for 25 people) must coordinate with the training
sortie manager (who provided the other example, above) as well as a large number of other
individuals who each manage their own set of required training resources and events. A
negotiation process occurs where they balance the needs and schedules of trainees against the
availability and schedule of resources and related training events.

Even once the schedule is set, problems occur. The training manager discussed
several types of problems. One problem, more common with reservists, is last minute
cancellations, due to illness or job requirements. This requires rapid rescheduling to fill the
required position, so that training can occur for the other positions, hopefully with someone
who needs the training in that position. Furthermore, care must be taken to track the fact that
the originally scheduled trainee did not attend the event and therefore still has an open
requirement for it.

Another problem that occurred recently was that an instructor was unable to make the
training flight. This resulted in a lot of last minute scrambling to find someone with the
applicable training credentials to fill the spot. A system which keeps track of all training
resources, including instructors, both as to their availability and their whereabouts, would
greatly aid this rescheduling process.

A third contact reiterated many of the same problems and issues, but also brought up
several others. It is important for senior leadership to see how far along the trainees are so
that they can determine how many more sorties or how much more simulator (and other
resource) time to buy. Furthermore, an automated system must be able to handle large
training events and large aircrews. The system must provide Web access to allow trainees to
sign up for courses and events and provide their availability information. An intelligent
system must be capable of deconflicting the schedules of trainees and of the resources. One
problem they currently have in particular is having trainees scheduled for two separate events
at the same time.

Widely varying and rapidly changing training requirements result in there being many
different versions of the same course. At a particular moment in time, there may be different
versions of the course in terms of different scenarios (perhaps for different types of missions
or different geographical locations) or for different types of computer hardware. Particular
training organizations may need to frequently update their courses as well, leading to multiple
course versions each year.

Although there are a very large number of existing training management systems,
these do not begin to meet the complex needs discussed here and do not contain intelligent
features. These systems are primarily networked database systems and store data relating to
course catalogs, class schedules, enrollment, student information, transcripts, class
evaluations, homework, self-assessments, course authoring, content management, grades/test
scores, and rudimentary skills, The primary benefit they provide is that of a pre-customized
DBMS with existing interfaces defined to the vendor's own courseware offerings or authoring

9

Stottler Henke Associates, Inc. Phase I Final Report

tools. The primary disadvantages are that they do not attempt to track higher level skills and
they do not exhibit intelligence, decision making, or proactivity, leaving these functions to the
training managers or the students themselves.

An intelligent system is needed to help manage the complex training process. It
should perform the functions that a person dedicated to managing the training of a small
group of students would perform, but do it automatically. This would achieve an ideal which
is rarely achieved. An Intelligent Training Management System (ITMS) would intelligently
guide the students as to their training needs and opportunities and help with the development,
delivery, evaluation and scheduling of courses.

The problems discussed above dictate the requirements of an ITMS. The ITMS will
keep track of what general and specific skills, knowledge, and tasks the student has mastered
over time. It will use that information to proactively help the student manage his career and
the life-long learning process. After determining the training requirements, it will schedule
the required training resources, including instructors and other team members (other students).
It will track the different, changing versions of courses and help manage the change and
notification process. For example, it will keep track of which student took which version of a
course and know how they are different. Given relevant data, the ITMS will automatically
produce an evaluation of each course. In addition to capabilities for students, instructors, and
course authors, it will provide functionality for supervisors, mentors, course evaluators, and
training managers. The ITMS will support the management of the permissions and
authorizations to access the various data and functionalities.

The ITMS will provide intelligent student tracking and learning/career management.
It will keep track of where the student is at in his career, in terms of what courses and jobs
he's had. But more importantly, it will keep track of what skills, knowledge, and tasks he's
mastered over time. These will include general and abstract skills, not just specific, concrete
ones. For example, one new skill is the ability to learn about new equipment and how to
troubleshoot it. Another is the ability to adapt to new enemy capabilities. When tracking a
student over a long period of time, many things can change. His job requirements change.
The courses change. Some of his skills decay from lack of use. (That is, skill mastery doesn't
always increase). Because the ITMS is tracking these skills over a student's entire career, and
because the required skills change frequently, the ITMS must allow the training managers to
update the general and specific skills taught by courses and required byjobs. The ITMS must
be able to track prerequisites taken by the student and required by him for future events. The
ITMS will be able to calculate these prerequisites, even given the complexities of determining
them in the face of complex regulations and skill requirements.

The ITMS will be proactive - telling students what prerequisites they need to finish
before taking courses, nudging them when they fall behind, and informing them of possible
skill decay. This will occur when the student is only using part of the skills for which he was
trained, in his current job. This is especially important if his next job assignment will be
using a different set of skills. In that case, it should evaluate those skills (with a no-penalty
test) and remediate the student with refresher training as appropriate. The ITMS will inform

10

Stottler Henke Associates, Inc. Phase I Final Report

students of the need for updated knowledge and skills for theirjobs and new courses or new
versions of old courses that address those deficits.

The ITMS must also address individuals and teams. The ITMS must be able to
independently make decisions and recommendations but also accept input and overrides from
training personnel. As part of determining the training requirements and tracking their
completion, the ITMS could also evaluate the results of the various training events, either for
individuals or teams. This would allow it to be able to automatically schedule additional, or
remedial, training as required. Another issue which an ITMS could easily address is that of
deployment. When a team must be quickly assembled to deploy, the ITMS has all of the skill,
training and availability information to select the best team, either as a whole or assembled
from individuals. It can also identify the additional training required of a team and its
members to meet the needs of a particular deployment.

3.0 Solution Overview

The Intelligent Training Management System's primary focus is the student and its
primary objectives are to maximize his efficient training and to further his career development
in the context of life-long learning and general problem-solving. The tools it has available to
it with which to accomplish these objectives are primarily the different types of learning
opportunities and training events, and, evaluation methods, although all of these are
constantly changing. These include distance learning, on-site, and correspondence courses;
on-the-job-training; tests, just-in-time scenarios, simulator training, training sorties, etc. In
order to make decisions regarding its actions, the ITMS has several types of knowledge
available to it, including prerequisites, course learning objectives (which skills are taught by
the course), training requirements regulations, job descriptions (which skills are required and
practiced by various jobs), estimates of the decay rate for those skills, available resources, and
the career map which describes the progression and prerequisite relationships between
courses, ranks, and jobs. All of these change over time. The ITMS also has sources of
additional knowledge including the student, his supervisor, course results, and evaluation
results.

The ITMS will determine the applicable training requirements for trainees and teams.
It will schedule the required events, including the trainees, instructors, and other needed
resources. It will track the results and update the trainee's and team's histories. It will be
able to select the best teams for deployment on particular missions and what training is
required for a particular team to perform a particular mission.

The student tracking solution is based on the intelligent student model, borrowed from
the realm of intelligent tutoring systems. The ITMS explicitly models the student's currently
mastered skills, knowledge, and tasks. These are the stated and more general learning
objectives of courses. They are organized by the instructor as a multiple dimensional
hierarchy primarily around the more-general and subtask relationships. The student model
also includes a description of which jobs the student has had and which courses he has taken.
Since both are subject to change over time, the student model actually references specific
versions of each. The courses and job descriptions utilize the same vocabulary (the hierarchy
of skills, knowledge, and tasks) used by the student model. These are used to infer mastery

11

Stottler Henke Associates, Inc. Phase I Final Report

levels in the student model. The ITMS will, when appropriate, automatically question the
student and his supervisor regarding the specific and general skills taught by courses, and the
degree to which they are successfully taught, skills required for (or not used in) various jobs,
and the student's current degree of mastery of those skills.

The student's mastery changes either up or down over time. This is modeled with
estimates of the skill increase provided by courses and jobs (on-the-job training or simply
practice and experience) and heuristic skill decay factors which become specialized to the
student, through data mining techniques, after the ITMS had had a chance to observe him over
a long period of time. The ITMS also knows how quickly the student should be completing
courses and progressing in his career. The ITMS uses the student model to proactively make
decisions and notifications. It also contains more mundane information such as contact
information (E-mail, phone, mailing address), available computer resources, his supervisor,
etc.

After training requirements for each team and individual are determined and approved,
the system would attempt to schedule the applicable events. The ITMS would make use of
each student's availability, constraints, and requirements to come up with the most desirable
schedule for the team as a whole. It would also have to negotiate with the managers of the
training events or applicable resources. This negotiation might be with the human managers,
in which case they would be sent an e-mail with a form to check-off the possible available
dates and capacity of the required events. Or it might be with an ITMS component, which is
local to the training event or resource manager. In that case, several messages can pass back
and forth as to an optimal event schedule, given the needs of the students and of the events
and resources. All related training managers could alter the schedule or add additional
constraints. Since we have found in most scheduling problems that there is often a large
number of reasonable schedules, and since not every constraint is always defined to the
scheduler, the ability to manually adjust the schedule, while the ITMS continues to check for
constraint violations or resource conflicts, is very useful.

The ITMS would provide reports to senior leadership about the progress of the
training and the additional resources required to meet applicable training targets. When
requested, it could assemble or select the most applicable team based on mission
requirements. It could also determine the additional training that is required to bring one or a
set of teams up to the requirements of some particular type of mission. If requested, it could
then schedule the applicable training events.

Along with the student model is an intelligent course model. It uses the same
vocabulary (skills, knowledge, and tasks hierarchy) as the student model to describe its
learning objectives. Because a course will have different versions (such as which scenarios
were actually used for a particular student as well as due to updated content over time), each
course is actually a complex web of versions and scenarios. Each version has its own
(partially different) learning objectives, history and student lists. The ITMS automatically
uses actual student performance to evaluate the course in terms of how well it meets its
learning objectives; that is, how well it teaches the specific and general skills.

12

Stottler Henke Associates, Inc. Phase I Final Report

The course model is used by the ITMS as its starting point for students who have
taken the associated course. ITMS's first estimate of the mastery of a skill by a student is
based on the results from the course that first teaches that skill to the student. (This estimate is
later updated based on supervisor evaluations, relevant on the job experience (or lack thereof),
decay factors, and future leaming events). The course model can handle prerequisites in one
of two ways. Courses, jobs, or ranks can be explicitly listed as prerequisites for other courses
jobs, or ranks in a career map. Or, the required mastery level of skills, knowledge or tasks
can be listed. This latter method provides more flexibility for the ITMS in terms of how it
recommends that prerequisites be fulfilled. For example, if one course is listed as an explicit
prerequisite for another, the ITMS will be forced to require the student to take the first course
before the second. However, if a course lists skill levels as its prerequisites, there may be
multiple methods of achieving those requirements. It is even possible that the ITMS estimates
that the student already has the prerequisite levels (perhaps through on-the-job experience, or
other courses).

The training manager will also be able to specify rules to allow waiving of
prerequisites. The ITMS will calculate their effect in terms of the number of eligible students
and likely course throughput.

Given the intelligent course model, it's relatively straightforward to add version
control and tracking and configuration control functionality. Version control and tracking
includes keeping track of which courses and versions are available and what each teaches;
which students or units have which versions, whether they were distributed via CD or the
Internet; making sure students are using the correct version for their particular needs given
their computer constraints; and making sure the appropriate students are notified of course
updates.

Configuration control refers to aiding the courseware development process by tracking
the different versions of the separate files that make up the courseware, making sure that all
the development team is using the most up-to-date versions, and that the final released
product is the most up-to-date version. These capabilities are important when several
different individuals are involved in authoring the course.

A final ITMS capability is automatic courseware evaluation. It is facilitated by the
student and course models. The ITMS evaluates the course's ability to meet stated and more
general learning objectives. It will use both in-course test results (which is somewhat
circular) as well as after-course test results. The ITMS will use job performance, based on
questioning the supervisor on specific and general skills of the student. It will also use the
student's performance in follow-on classes. It will initially evaluate the course-based results
from a pre-release test class, if available. It uses the information in the student models to
estimate a course's ability to impart skills, knowledge, and task mastery Using constraint
satisfaction, it can also assess the course in reference to specific students and use data-mining
techniques to look for patterns to see what attributes a student needs to lead to a good or bad
performance in particular courses. This is helpful feedback for the course authors since it tells
them if their course is particularly good or bad for certain kinds of students, so they can take
advantage of it or take the opportunity to fix it.

13

Stottler Henke Associates, Inc. Phase I Final Report

4.0 System Description

4.1 ITMS Architecture

The high level ITMS Architecture is given below. The ITMS resides on a web server.
We have identified 8 different types of uses, each of which interacts with the ITMS primarily
through a web interface customized to that type of user. Each is described further below. The
ITMS updates each user's specific web page with information, which is particular to that user.
Additionally, for proactive notifications, the ITMS will be interfaced to an E-mail system so
that it can send E-mail to any users that have it. The ITMS will also have the capability to
print out physical letters, in the event that a user is unreachable with E-mail. The ITMS will
also have a database interface to receive information from external databases and update
them, if required. These databases include personnel databases (to get a student's contact
information, current rank and job, supervisor, etc.), registrar databases (to determine who is
currently registered in what course, what future courses, what past courses, and any
certifications), course results databases (to get student's course results), and course description
databases.

TWeb 4---Student
IErface T Interface

Instructor4---- Interface Server 4.-Jo.Instructor

Course Author-- 4---Course Author

Course Evaluator DB Interface Course Evaluator

Training Manager4_..- _ -Training Manager

Mentr*--+ rExteal ata ases] 4-loMentor

Supervisor4----o Supervisor

Permission Czar -- Permission Czar

Figure 1. ITMS High Level Architecture

The student has a personalized web page that ITMS updates with information specific
to him. For example, if there is a new version of a course that he has taken, that information
will be posted on his web page. When the ITMS schedules him for a particular training event,
that information will be E-mailed and posted to his personal web page. The student can use
his web page to make queries and generally see what courses are available and what
information the ITMS has deemed especially relevant to him. This is also where he keeps his
contact and other personal information up-to-date, including his availability for training
sorties or other hard-to-schedule events with limited resources and opportunities. If the ITMS

14

Stottler Henke Associates, Inc. Phase I Final Report

has had trouble contacting him, it will specifically request up-to-date contact information
when he logs on. The student can view his own skill mastery levels, and receive career
counseling guidance as well. The proactive E-mail-type notifications include the need to take
prerequisites, the fact that he is falling behind in completing those prerequisites or other
requirements of his career path, updated versions of courses or knowledge required for his
job, and skill decay warnings.

The instructor has authorization and capabilities through the web page to view the
models of students currently in his courses, add new students to his courses, remove students
from his courses, and register the student's result data for his courses. He can also view
student questions or products and send answers to all the course's students, a particular
student, or post them to the course web page.

The course author maintains the descriptive information for course versions through
his web page. He can view the skill requirements and other prerequisites for various jobs, edit
the skill and other prerequisites for his courses, edit the estimate of the specific and general
skills mastery that the course accomplishes (the learning objectives), and view evaluations of
the course. He can also add to the skill, knowledge, and task hierarchies. He can also access
the configuration control capabilities.

The course evaluator reviews the course and inputs his review, evaluation, and
suggestions, which only the course authors can view. He is also authorized to examine
student models for students taking the course, but without access to their names, so he can see
if his hypotheses about the strengths and weaknesses of the course are valid.

The training manager, through the web interface, can edit the skill requirements and
other prerequisites for various jobs and add to the skill, knowledge, and task hierarchies. If an
ontology conversion is required, perhaps because a job or its vocabulary has changed
radically, he can define the mapping from the old hierarchies to the new. He can also input
waiver rules and view the resulting course eligibility and projected throughput.

Particular students and/or particular courses or jobs may have designated mentors. A
mentor, through the web interface, can view a student's skill mastery model and his career
plan. He can answer the student's questions relating to his current job, course, or career.

A student's supervisor, through the web page, can view the student's skill mastery
level, submit his own estimates of the student's abilities for both general and specific skills,
and update the skills needed and practiced for the student's current job. He will also be
notified if the student has not responded to the ITMS in a reasonable period of time.

The permission czar authorizes various users and classes of users to have access to the
data and capabilities within the ITMS. In addition to the 8 roles described here, he can create
new roles as new combinations of authorized capabilities and data access.

4.2 ITMS Design

15

Stottler Henke Associates, Inc. Phase I Final Report

The ITMS design is shown below. The heart of the system is the base ontology
maintained by the course authors and training managers and which will be referenced by all of
the models in ITMS. This base ontology will be described as multiple hierarchies of skills,
knowledge and tasks (hereafter simply referenced as "skills"), These are the skills and
knowledge required to perform particularjobs. The tasks are the tasks required to be
performed in a particularjob. These skills may be either general or specific. For example, a
particular weapon director may possess the specific skill of recognizing the champagne air-to-
air tactic. Another weapon director may possess the more general skill of recognizing any
tactic that is attempting to outflank the opposing force. This example also illustrates one type
of relationship modeled between elements in the hierarchy- the more-general (or more-
specific) relationship. Under this relationship the skill of recognizing any tactic that is
attempting to outflank the opposing force will have several children including recognizing the
champagne tactic, recognizing the bracket tactic, recognizing the pincer tactic, etc.

The other type of relationship supported between skills is the subtask relationship.
The task of a weapon director making picture calls to fighter pilots consists of detecting the
enemy tracks, recognizing their tactics, determining which friendly fighters are affected,
formulating the proper radio transmissions, then making them. Each of these is a subtask of
the making picture calls task.

Skills/Knowledge/Tasks
Ontology/Hierarchies

-- 4

Stu n Cors Jo

interfaaee ter al B I terac

Figure 2. ITMS Design

16

Stottler Henke Associates, Inc. Phase I Final Report

Course Models

In the figure above, dotted line arrows connote reference links. That is, the course
models, student models, job models and career map all reference the skills hierarchies. The
course authors maintain the course models and decide at which point the updates are
significant enough to warrant that a new version should be defined for the course. The course
models include learning objectives which are lists of skills from the skill hierarchy (either
general or specific or a mixture of both) as well as the degree of mastery expected from
students completing the course. The course model also lists explicit prerequisites which may
be any course, job, rank, or other object appearing in the career map. Required prerequisite
skills needed to successfully take the course can also be described in the course model using
items from the skill hierarchies and degree of mastery required. The course model, in
addition to the course author's estimates, will also include ITMS's estimates of the course's
ability to make student's achieve various levels of mastery. These are statistical estimates
based on constraint satisfaction applied by the inferencing engine. The course model will
include estimates from course evaluators as well. The course model (for editing and
examination of ITMS's quality estimates) is available to course authors through their web
interface.

Job Models

The job models are maintained by training managers and, indirectly, by supervisors.
Each job consists of a list of skills from the skill hierarchy (either general or specific), as well
as the degree of mastery required to perform the job. If skills are expected to improve during
the course of the job or other on-the-job-training is expected to occur, the mastery level
expected at the end of the job assignment is also described. These initial estimates are also
updated by ITMS as it gathers more data, primarily from supervisors of the students holding
the relevant jobs.

Career Map

The career map primarily shows the relationship between the various courses, jobs,
and ranks in the domain. Arrows between these objects represent explicit prerequisite
relationships. For example, a particular rank may be required to take a particular course,
which is required before assignment to a particularjob. In the career map, prerequisite arrows
would be shown from the rank to the course to the job. Any object may have any number of
explicit prerequisites and may be the explicit prerequisite to any number of other objects.
Objects can also be implicit prerequisites for each other, by the definition of prerequisite skills
described above. The course map objects also include heuristic knowledge as to how fast
they can be expected to be accomplished. The career map can be accessed by students who
are in the process of determining their career goals and is maintained by a manager for that
specific domain. For example, the career map for AWACS weapons directors (WDs) would
be maintained by the manager responsible for defining the requirements and prerequisites for
AWACS weapon directors and senior director jobs.

17

Stottler Henke Associates, Inc. Phase I Final Report

.Student Models

The student models are generated by the ITMS and basically copy the structure of the
skills hierarchy. For example, the student model for a particular AWACS WD would contain
the entire hierarchy for the AWACS WD domain, both the low-level, specific skills and the
high-level, more general skills. For each skill in the hierarchy, the ITMS will have estimated
the mastery of the particular WD in that lowor high level skill. The first estimates for a skill
are based on the first course or job that develops some mastery in that skill. This estimate is
refined with additional data as it becomes available to the ITMS over time. Furthermore, the
ITMS will make additional inferences as appropriate. For example, if all of the subtasks for a
task are mastered, then it is likely the task itself has been mastered (subject to the ability and
need to perform them concurrently). Similarly, if a course teaches the general ability to
recognize tactics and, additionally, the student has demonstrated some proficiency in
recognizing specific tactics, it can be inferred that he can recognize a variety of tactics (or
easily learn to), even if he has not been tested on them before.

Course/Student Data Management System

The ITMS will be able to track and manage thousands or even millions of students.
Thus, the ITMS will store the information associated with students and the student model in a
database management system (DBMS). Similarly, there will be a lot of information
associated with the results of particular students taking particular courses and these will also
be stored in a DBMS. This is indicated in the design by the "Course/Student Data
Management System" box.

The ITMS needs to get the results of each student taking each course. In the case of
resident courses, this would likely occur using the interface to *external databases, so that a
batch of students who have just completed a course, and whose results are stored in a
database, could have their results input electronically, all at once. But in the case of electronic
courseware, it would be best to have the courseware automatically send the results to ITMS.
SHAT will provide a library of code which course authors can use and easily add to their
courseware so that the results are sent back to ITMS when the student completes the course.

Similarly ITMS expects to get results in the vocabulary of the skill hierarchy. The
courseware may have the data in a different form, such as listing of correct and incorrect
student actions. SHAI has developed existing code which can be customized by course
authors to convert student action lists to estimates of the degree of mastery of skills. This
code will be packaged and provided to the course authors as well.

Student Plans

The student plans are generated by the ITMS in consultation with the student. The
student examines the career map and selects career goals from the objects in it. ITMS then
examines his current accomplishments (in terms of mastered skills, courses taken, and jobs

18

Stottler Henke Associates, Inc. Phase I Final Report

and ranks held) and computes what is required, in what order, in how long it is likely to take,
and reports this information back to the student.
Other Knowledge

In addition to the models and career maps, there is a large amount of other significant
knowledge which can be edited and input into ITMS by users. This includes heuristic a priori
decay factors; contact methods with heuristic estimates as to their success probability, likely
delivery times and level of effort; proactivity knowledge and training regulations and
requirements knowledge, as described below.

One specific type of knowledge represented with ITMS is general knowledge of
training requirements for individuals and teams. ITMS includes an intelligent training
requirements module which uses this knowledge to determine the training requirements for
each individual and team. We use an object-oriented approach to represent training
regulations and requirements. Within the ITMS, objects exist which correspond to different
positions and teams within the Air Force and which describe the applicable training
requirements. Through a multiple inheritance scheme, objects which correspond to individual
trainees are dynamically instantiated as members of the applicable classes. For example, an
AWACS pilot would be instantiated as a member of the following classes: Air Force
personnel, air crew member, pilot, and AWACS pilot. Furthermore, the pilot's team would be
instantiated as an air crew and AWACS team. Associated with each class are the data and
methods to calculate the training requirements, based on the individual's and team's histories.
These requirements are themselves objects that describe the resources needed for the training
requirement, or event. The training event might simply be 20 hours of classroom training on
applicable threats. In that case, the resources might only be a classroom, instructor, and
presentation materials and devices. A more complex training event might be a Defensive
Counter Air (DCA) AWACS sortie. The required resources would be an AWACS aircraft, 18
trainees to man the positions, perhaps 10 instructors, a tanker and crew, 4 F-16s to be
controlled (along with their pilots), several aircraft and pilots to fly the threat profiles, and
enough airspace to play the engagement.

The requirement objects for each individual and team are displayed in the Identified
Requirements Editor. These can be accepted or supplemented by the training manager.
These are sent to the intelligent scheduler, possibly with the addition of more constraints.
ITMS includes an intelligent scheduling capability that manages all the resources under the
corresponding training manager's control. Different types of training managers have different
types of resources under their control and so the different intelligent schedulers perform
different functions, but all will use the same underlying technology.

Intelligent Scheduler

The following example illustrates the complex negotiations automatically managed by
ITMS. A training manager in charge of the 25 AWACS weapons director (WD) trainees, is
primarily tasked with determining the training requirements for each and managing their
schedules. The intelligent scheduler on her local PC is only free to select times for the
trainees (subject to their entered availabilities and constraints) but not to schedule/allocate

19

Stottler Henke Associates, Inc. Phase I Final Report

resources under someone else's control. If it was determined that several WDs required a
training sortie, a request with their available dates would be sent to the intelligent scheduler
residing within the ITMS on the AWACS sortie manager's desk. This scheduler, while
having no control of trainees, would have control of the resources controlled by the sortie
manager, including AWACS aircraft and maintenance crews. Unfortunately, it does not have
control of the required fighters or their pilots and so would have to send requests for those
assets to applicable fighter units. If those units were also running ITMS, their intelligent
schedulers could automatically respond to the requests. If not, E-mail requests would be sent
to the managers of the fighter sorties requesting specific dates and times and/or what existing
fighter sorties could be piggy-backed with. The E-mail would include an automated form that
facilitates the human responses and is easily machine readable. Eventually, the sortie
manager's intelligent scheduler would determine what it thought was the best sortie schedule
and send it back to the original requester (in charge of the 25 WDs) for confirmation or
continued negotiation. This form of negotiation and interaction is what SHAI has already
provided in our existing intelligent scheduling systems.

One of the most important functionalities that the intelligent scheduler (and
collaborator) can provide is rescheduling in response to dynamic changes. If an instructor
canceled at the last minute, the training manager could request ITMS to find an alternate
which would cause the fewest perturbations in the training plan. ITMS can do this since it has
access to everyone's schedule and knows each person's whereabouts. In the more extreme
case, if a fighter unit cancels, ITMS can automatically determine alternatives and contact
them. The manager can interact with ITMS to select the best alternatives.

At any time in the scheduling process, humans can intervene and edit the current
schedule or define additional constraints or resources. Inside the schedule editor, an
explanation as to why the particular resources and time windows were selected is given.
Alternative acceptable times can also be displayed. If the user alters the schedule, the
intelligent scheduler will check for violations of constraints or over-commitment of resources
(including trainees). Once the schedule is finalized and approved, it is automatically
published and disseminated to all applicable parties. Since the intelligent scheduler knows all
of the resources required for each event, it is a simple matter to send notifications to the
manager of each resource. These can be formatted plots showing graphically, for each
resource under the manager's control, when each is committed and for which training events.

Inference Engine

The inference engine infers new information and knowledge and makes decisions. In
the diagram above, an arrow directed toward the inference engine implies that it uses that
information to make an inference and an arrow directed away from the inference engine
indicates that it derives and outputs the indicated information. -Arrows in both directions
indicate both an input and an output relationship. The inferences take several forms. The
mastery of skills by each student must be inferred by the ITMS and placed in the student
model. This inference for skills for which data directly exists is more straight-forward. The
data can come from many sources including course results, course-independent tests,
supervisor evaluations, and follow-on course results. Furthermore, since there are

20

Stottler Henke Associates, Inc. Phase I Final Report

relationships between skills in the skill hierarchy, mastery can be inferred for other skills
based on mastery estimates for adjacent ones. For example, the ITMS can infer mastery of all
subtasks if the supertask is mastered (and vice versa as in an earlier example). Similarly if a
more general skill is mastered, all of the more specific skills underneath it can be considered
mastered. Additionally, if the student has shown that he can quickly master a number of
sibling skills under a more general skill, it may be safe to assume mastery of the more general
skill as well.

These previously described types of inferences are one form based on graphical
information. Another is based on the career map. The inferencing engine can use the
graphical prerequisite links in the career map to assemble the chronological order of events
that the student must accomplish to achieve his goals, given his current accomplishments.
The inference engine also examines the skill prerequisites of the goals and subgoals,
compares them to the student's current levels or the values expected after taking one of the
courses, and determines if additional courses are required to address any skill deficiency.

To evaluate a course's ability to meet its learning objectives, the engine uses a
combination of constraint satisfaction and statistical inference and uses data from several
sources. Consider a very simple example where are there 4 students and 3 courses. Each
course has several learning objectives, several skills, it is trying to teach. After taking the
course, each student will have several opportunities to have his relevant skills evaluated. This
situation is depicted below. Student A has taken Course I and 2 as denoted by the arrows.
Course I happened to have developed a particular skill, Si. At the end of the course, student
A will be evaluated in reference to skill Si and this can be used as input to the process of
determining the course's ability to teach Si. This is shown by the "SA, Cl, Si Results" box.
This box is attached to an arrow that is an extension of the arrow from student A to course 1,
indicating that evaluation of skills taught to Student A by course I will continue to be
evaluated over time. The second box up the evaluation arrow indicates data on student A's
skill Si mastery from ajob performance review by his supervisor. Finally, the last box shows
the results of student A's performance at the beginning of a new course;C 11, that requires Si
as a prerequisite skill. The Decay box indicates that before taking the course, a six-month
delay occurs during which time skill Si decayed some amount. Keep in mind that this
structure would be replicated for every skill taught by course I to student A. And of course
this structure is replicated for every student taking each course.

21

Stottler Henke Associates, Inc. Phase I Final Report

ec~ay(/ SA,6~ts C Cl1, Si Entry Perfrac

A, Si Job Performance

Figure 3. Constraint Satisfaction Network

Constraint satisfaction is used in the following way. The assumption exists that for
each skill, a course has some quality in its ability to teach that skill (either specific or general
skills). This quality will vary for different types of students. Furthermore, each student has
his own unique ability to learn new skills. This can be estimated for a particular student by
seeing how well he learns new skills in all of the courses (and other learning opportunities) he
experiences. His mastery of skills is given, in a noisy way, by the various evaluations
performed on him. Furthermore, if significant time elapses without practicing a skill between
when it was learned and when it was evaluated, decay will be assumed to occur. There will
be an apriori estimate of this decay for each skill, but it is assumed to vary somewhat for
different students. The problem becomes how to most consistently label the graph to explain
the various (noisy) evaluation results. This is both a statistical and a constraint satisfaction
problem. Any course or student cannot be considered in isolation, as the figure above shows.
For example, if the results for course 1 are poor, it may be caused by a poor course, poor
students, or a mismatch between the specifics of the course and the attributes of the students.
If the students have done well in other courses then the second hypothesis is eliminated.
Unless the students are very similar to each other, the third hypothesis cannot be the sole
explanation either. Thus, to determine which of the three (or which combination of the three)
is most appropriate, the data for all students and all courses must be considered
simultaneously. Constraint satisfaction techniques were developed for precisely this type of
problem.

The inference engine also reasons about time. When it sends an E-mail notification to
which it expects a response, it schedules an event in the future to "timeout" if it has not
received the response and take the appropriate action. If the response occurs before that
scheduled event, the event is cancelled. Similarly, it will use the decay heuristics to
determine when a student's skills should be checked, if he is not exercising them. When that
day arrives, the student's recent history is examined to determine if in fact, skill decay has

22

Stottler Henke Associates, Inc. Phase I Final Report

likely occurred, and if so, to take the appropriate action. This is how the inference engine
achieves proactivity.

As mentioned previously, the inference engine may decide to make proactive
notifications using an E-mail system, so an interface to such a system is shown in the design.
Additionally, data from an external database system must occasionally be processed and thus,
an interface to these is provided as well.

4.3 Functionality

The ITMS is a general capability that can be customized by the users to manage any
system of training courses. This occurs by first creating the skill hierarchy then models for
the courses and jobs. The process is completed by input of the career map and miscellaneous
heuristic knowledge.

Student-Related Functionality

One of the ITMS's most important functionalities is the pro-active notification of
students. This typically occurs via E-mail with an acknowledgement expected. ITMS will
follow up with additional E-mails and/or regular mail, if required. ITMS will eventually
notify the student's supervisor, if it receives no response. If the student happens to log on his
web page during this period, ITMS will explicitly request updated E-mail and contact
information. Student response can be via E-mail or the Web. Based on the results of user
requirements analysis, we may also provide ITMS the ability to make notifications by
telephone and receive some types of responses by phone.

The notifications will include telling them when they need to take prerequisites for
future courses and telling them that they're falling behind in c6mpleting the prerequisites or
other career goals. ITMS will proactively notify them that certain skills may have degraded
and need to be evaluated and possibly refreshed, that their next assignment requires a different
skill set and therefore refresher or additional training or scenarios, and that courses or job
requirements have changed and additional training is needed to stay up-to-date..

ITMS will also provide information to the students via their personal ITMS web page
including their strengths, weaknesses, and progress. This will be a bar chart that shows their
mastery level of relevant skills. These bar charts will be hierarchical and follow the skills
hierarchy. Thus, the first bar chart will correspond to the first level, or breakdown, of the
student's skills. The student can then click on any particular bar to see that skill's subskills
expanded (based on either the subtask or the more-specific relationship) in its own bar chart.
Any of those skills can be similarly selected and so on. The student's web page will have a
"What's new" section and a "What's new for him" as well which would contain information
about new courses, new versions, or new knowledge required for his specific job or based on
courses he has taken.

The ITMS web page will also include a career counseling section where the student
can view the career map and select career goals and timelines for achieving them. The ITMS

23

Stottler Henke Associates, Inc. Phase I Final Report

will provide advice as to what timelines are reasonable and achievable. The ITMS will
determine, from their career goals and already achieved skills, ranks, jobs, and courses, and
from the career map, what subgoals are required to meet the student's objectives and in what
order. This will be based on the explicit prerequisite relationships as well as required
prerequisite skills. If any of the student's skills meet the required prerequisite levels, the
ITMS will find appropriate courses that can build the skill level from what the student
possesses to that required for some objective.

The ITMS will proactively question the students (and the ITMS will expect answers
via E-mail or web page). It will get feedback on each course they've taken as to its ability to
build mastery in the specific and general skills as well as the prerequisite skill levels required.
It will get feedback on their current job, what it entails and their ability to meet it. It will give
tests and evaluations, if the system suspects skill decay, and provide remedial refresher
courses, if appropriate. ITMS starts with heuristic apriori decay constants for each skill but
learns actual constants based on skill, skill type, and individual soldier.

Explanation Capability

The inference engine, which makes all decisions in ITMS, will record rationale for
each of its decisions. These then provide the basis of an explanation facility for students and
other users. For example, the student could ask why the ITMS has included a particular
course in his career plan and it might respond with the explanation that it was a prerequisite
for one of the prerequisites for one of his career goals. He might ask why the ITMS believes
certain skills have decayed and the ITMS would respond with a description of what it believes
the student's job currently is and what skills are not practiced by that job along with the rate at
which it believes those skills decay for that student. A supervisor might ask for an
explanation for why the ITMS as estimated the mastery of a certain skill for the student to be
a particular value. The ITMS would respond with a description of how it was calculated and
where the supporting data come from. Similarly a course author might ask for an explanation
for the ITMS's calculation showing the degree to which the course was meeting one of its
learning objectives.

Supervisor and Mentor-Related Functionality

The ITMS will proactively question the supervisors (who answer via E-mail or their
web page). It will get feedback on soldier and the preparation for his current job provided by
courses he has taken. It will get updated job requirements, both general and specific, for the
particular position. It will provide the same bar chart type functionality to view the skills of
students under their supervision, subject to the authorization of the training manager. Similar
functionality will be provided to the student's mentors. These will also have facilities for
receiving and answering student questions regarding their job, career, or courses that they are
taking.

24

Stottler Henke Associates, Inc. Phase I Final Report

Course Author-Related Functionality

Course authors will be provided a graphicMl editor to maintain the skill hierarchies.
The editor will show graphically either one or both hierarchical relationships simultaneously,
and provide user-friendly point and click methods for adding new skills, and linking them to
other skills through one of the two relationships - subtask or more-specific. A similar
interface will exist for selecting which skills from these hierarchies are being taught and to
what level by courses under the author's control. In addition to the skills taught, the author
will also specify the prerequisite skills and degree of mastery required for successful entry
into the course. These skills may be specific and concrete or more general and abstract in
nature. He will also graphically specify prerequisite relationships between his course and
other courses, jobs, or ranks (by editing the career map). Additional course information
includes the version, possible scenarios and their attributes, required hardware or software or
other constraints.

He will also be able to get evaluations of his course in bar chart format where his
estimates of the prerequisite and resulting skills of the course are compared to evaluato's
assessments and actual results from students who have taken the course. Their improvement
(or lack thereof) of skills, after having taken the course, will be based on supervisor
evaluations of students job performance and the course's ability to prepare them, student self
and course evaluations, and performance in subsequent courses. The evaluations will
consider the student's improvement in both specific and general skills. Data-mining
techniques will also be used to try to differentiate course value between different types of
students. In these cases, the ITMS will make suggestions for improvement by identifying
course areas that are weak (which skills are not being taught as well as expected) and which
course areas are weak for different types of students. It will also suggest when additional
scenarios might be needed to cover aspects of a course that aren't currently covered or not
covered by enough scenarios based on student use and failure lattems. The ITMS will also
provide the author with how many students have taken which versions and/or scenarios and
which did the best later.

The ITMS will also provide, to a group of course authors, course configuration
management capabilities. Configuration management refers to aiding the courseware
development process by tracking the different versions of the separate files that make up the
courseware, making sure that all the development team is using the most up-to-date versions,
and that the final released product has these most up-to-date versions of files. ITMS will
maintain a directory of "published" courseware files which represent the currently accepted
version of a course. Authors then "checkout" these files to make updates and the ITMS keeps
track of who has what file and when it was checked out. The file then becomes read-only for
other team members and they are warned, when they view it, that it is currently being revised,
when the revision was started, and who is doing the revision. The ITMS would also archive
old versions of files. This scheme keeps authors from making parallel changes to the same
files, while continuing to let them reference them in their own work. When the revisions are
made an approved, the new version of the file is added back to the directory.

25

Stottler Hence Associates, Inc. Phase I Final Report

Training Manager-Related Functionality

Training managers will be provided a graphical editor (similar to the course authors)
to maintain the skill hierarchies and to edit the skill requirements ofjobs, as well as the skills
developed or practiced by the jobs or expected on-the-job training. They will also have
similar graphical capabilities to edit the career map, though their focus will tend to be on the
jobs as opposed to the courses. The ITMS will proactively determine if there are skills
required for jobs for which no course or other learning event develops the required skills to
the required degree of mastery and notify the training manager.

The ITMS will provide the training manager with an overall view of the students,
courses and jobs in his specialty. It will provide him graphically with how many students are
currently at each point in the career map. It can also project these numbers into the future,
based on how filled each spot is and the time required for the average student to achieve
various milestones as well as capacity constraints which might limit throughput. The ITMS
can also accept waiver rules from the training manager and show how this affects the
particular course in terms of eligible students and expected graduations (based on percentages
who expect to pass, given the waivers) or how it affects the overall system, into the future.
The ITMS will also provide how many students have taken each course, version, and
scenario.

4.4 Innovations

The ITMS includes several innovations:

" ITMS is intelligent. It makes decisions. It "remembers," not just stores, information and
knowledge (in the sense that it keeps information in working memory and reacts when
certain events do or do not occur). It is proactive. All aspects of the system are stored in
an explicit knowledge representation which allows end-users to edit and modify all
aspects of the system, subject to the appropriate authorizations, of course.

" ITMS addresses the time span that encompasses an entire career.

" ITMS acknowledges the concept that students, courses, and jobs change over time, so that
the corresponding Student Models, Complex Course Models, and Job Models must
change as well, even while the history and content of the old versions is preserved.

" The ITMS utilizes user-editable hierarchies of skills, knowledge, and tasks as a basis for
the course, job, and student models. Both subtask (to fix a piece of equipment requires the
subtasks of trouble-shooting and repairing) and more-specific (the ability to fix a specific
radio is a more specific skill compared to the ability to fix any radio) relationships are
supported in the multiple inheritance hierarchies.

" ITMS performs several kinds of inferencing. It makes inferencing based on graphical
descriptions (prerequisite links and hierarchical relationships), using Constraint
Satisfaction, and based on statistics.

26

Stottler Henke Associates, Inc. Phase I Final Report

* ITMS makes proactive decisions and actions, including proactive E-mail notification.

" Training requirements, resources, events, trainees, instructors, and other ITMS objects, are
not just data, but actual intelligent entities which facilitate many different uses. Just as
they schedule their corresponding real world object themselves, they could also be made
to provide explanations of their actions for training or optimal resource acquisition
purposes.

" No one has previously applied advanced scheduling techniques to the training
management problem before.

" The concept of distributed collaboration of a mix of automated and human decision
makers in separate organizations and locations is innovative. Although applied to a few
problems, it has certainly not been applied to training management systems.

5.0 Existing Training Management Systems

Little or no research has been performed for training management system and no
system has employed any Artificial Intelligence techniques. Therefore the related work
consists primarily of the many training management software systems that have been
developed and marketed. These systems are called by various names including training
management systems or software, education management systems, computer-managed
instruction (CMI), or training administration systems. There are currently over 60 such
systems being marketed [Hall 1998]. Companies marketing products include Allen
Communication, Asymetrix, American Training International, CBT Systems, Cytation
Corporation, DK Systems, Geometrix, Informania, Integrity Training, ITC Learning
Corporation, KnowledgeSoft, Lasso Communications, Inc., Leamcom, Inc., Macromedia,
NETg, On Tour Multimedia, Oracle, Pathlore, Plateau, Saba Software, Inc., Saratoga Group,
Silton-Bookman Systems, Inc., Syscom, Inc., Teamscape, TTG Systems, Inc., Micromedium,
and Infotec. The most popular products being marketed include Pathware, Librarian,
Manager's Edge, Ingenium, Registrar, TrainingServer, AdminSTAR, SkillVantage Manager,
PHOENIX, and World Trak.

These systems do not begin to meet the complex needs discussed here and do not
contain intelligent features. These systems are primarily networked database systems and
store data relating to course catalogs, class schedules, enrollment, student information,
transcripts, class evaluations, homework, self-assessments, course authoring, content
management, grades/test scores, and rudimentary skills. The primary benefit they provide is
that of a pre-customized DBMS with existing interfaces defined to the vendor's own
courseware offerings or authoring tools. The primary disadvantages are that they do not
attempt to track higher level skills and they do not exhibit intelligence, decision making, or
proactively, leaving these functions to the training managers or the students themselves.

27

Stottler Henke Associates, Inc. Phase I Final Report

6.0 Future Work

6.1 Phase II

The ultimate goal of the Phase II effort is to aid the training managers. The final
system will reduce their work load, improve the utilization of scarce resources, and reduce
training management lapses. The primary Phase II objective is to develop a full-scale,
operational version of ITMS in Phase II. By working closely with Air Force, other DOD
units, and commercial training managers and performing an analysis of the requirements of
other commercial potential clients, our implementation effort can be directed most
appropriately and therefore most efficiently for commercialization. Since the ITMS will be
implemented in three major releases, the Air Force and other users will have the opportunity
to use it operationally early in the project and provide us the necessary feedback to perfect it
during Phase II. In order to allow operational use, we will need to interface ITMS to several
existing database systems as described in Section 3.3, Task Descriptions.

6.2 Potential Applications

The-primary Phase II project results will be a full-scale, operational Intelligent
Training Management System (ITMS) developed in cooperation with several different users.
The ITMS will have immediate use throughout the DOD and Federal government. In fact, it
has significant support from current DOD training managers. For example, several officers at
Tinker AFB in Oklahoma have expressed a strong desire for an ITMS and discussions with'
them had a strong influence on the Phase II design. They will be some of the users of the
Phase II system, during Phase II. The US Army's Distance Learning Center at Fort
Huachuca, Arizona, has also expressed much interest in the ITMS and plans to use the Phase
II system, during Phase II. The individuals charged with managing the training process for
the Navy are the ships' executive officers (XOs). Commander Pinto, the XO on the USS Paul
Hamilton (DDG-60, an AEGIS Destroyer) has stated that training management is one of his
primary problems. He has even begun the process (coincidentally) of requesting that the
Navy upgrade its training management software, which is not currently at an acceptable level
of capability. Thus during Phase II we will have operational users throughout the DOD to
make sure the resulting system is beneficial to the government.

Several other great opportunities to marketing the ITMS to the government exist.
These primarily relate to the fact that SHAI is one of the premier Intelligent Tutoring System
(ITS) developers, and thus has a large base of customers who are interested in training
management. For example, our Tactical Action Officer (TAO) ITS, currently in operational
use by the Surface Warfare Officers School (SWOS) and onboard the Paul Hamilton, was
recently selected by the Navy for use onboard all AEGIS ships. These six dozen ships all
have the same training management problem described by Commander Pinto, and since they
will all already be using one SHAI product, it will be straight-forward to introduce ITMS to
those same ships.

28

Stottler -fenke Associates, Inc. Phase I Final Report

Similarly Paul Losiewicz, of the Air Force Research Laboratory is involved in Air
Force intelligence training. He is extremely interested in both our ITS authoring tool and this
ITMS project. Furthermore, one of our committed Phase II users is the US Army's military
intelligence training group at Fort Huachuca. They already train many Air Force intelligence
specialists and have a good relationship with Goodfellow AFB, the primary intelligence
training center for the Air Force. Goodfellow AFB also trains many Army intelligence
specialists. With this kind of cross training relationship, the ITMS can be expected to quickly
migrate from one center to the other.

SHAI is currently developing an ITS authoring tool for use by NASA training
managers to create ITSs to teach astronauts the skills to operate in-space experiments. These
training managers have the same management problems that ITMS will address.

There are several potential commercial applications. The commercial corporate
training industry is currently $62.5 billion for companies with over 100 employees [Training
Magazine 1999]. Even only allocating 3% to the management function leads to $1.9 billion in
training management costs. An ITMS can greatly reduce much of these costs, indicating that
a substantial market exists. This is further validated by the large number of training
management systems currently marketed.

Many large corporations, especially those involved with possibly life threatening
activities, also have complex training requirements and would benefit by ITMS. Examples
include nuclear power, airlines, toxic waste handling and clean-up, chemical factories and oil
refineries. Any organization with complex training requirements would benefit from ITMS.
Accordingly, Esteem Software Incorporated, our highly successful commercialization partner
for other endeavors, has agreed to market the ITMS to their substantial customer.

SHAI has identified the commercial training industry a's its primary marketing target
and written our business plan around this assumption. Accordingly we have hired a Director
of Business Development, Rick Row, whose resume given below in Section 6.0, to pursue it,
full-time. He has begun to establish relationships with many of the vendors of training
systems and services including CBT (largest vendor of training system to teach software
operation), Wicat (largest commercial vendor of aircraft simulations for pilot and
maintenance training), Flight Safety (largest commercial provider of aviation training
services), Raytheon Training, and NETg. Furthermore he has already identified some 60
training management systems currently being marketed. Since the ITMS encompasses
technology significantly beyond all of them, each is a potential partner for licensing our
technology to provide it to their clients, through integration with their products. A few
success stories during the Phase II will ease the process of approaching these companies.
Furthermore, the next 18 months should see a significant shakeout of these dozens of vendors
so that it will be clearer with whom we should license our ITMS technology. The Phase II
proposal, explicitly includes the task, "User Requirements Definition," which itself includes
steps to investigate commercial requirements and existing tools, partly with an eye toward
future partnering arrangements. While at EPRI, Mr. Row arranged intellectual property
licenses with manufacturers for EPRI technology resulting in $500,000 annual revenue. We

29

Stohler Henke Associates, Inc. Phase I Final Report

expect him to make similar arrangements for the ITMS with vendors of training and training
management software and services.

Meanwhile, as partly described above, SHAI has sold millions in intelligent tutoring
system products and services. We will approach these government and commercial
customers, all of whom also have training management system requirements. By involving
them in the Phase II Knowledge Engineering, User Requirements Definition, Design,
Installation and Training, and User Evaluation and Feedback tasks, we will ensure that the
final Phase II ITMS is both commercially viable and useful for DOD training managers.
Since we will have three ITMS releases in Phase II, there will be ample opportunity to
incorporate their feedback. Since we will have operational DOD and commercial users,
during Phase I, we will have several success stories which we can use to approach our other
ITS clients, training management system vendors, and training system and service providers.

Our commercialization strategy has many facets. From our previous experience, we
know that commercialization activities cannot wait for the Phase 11 project to end. SHAI has
developed an SBIR commercialization process that begins with the Phase I presolicitations.
We identify which topics have the most commercialization potential for SHAI and then
pursue those aggressively. This topic offered great potential because it represents the
intersection of two of SHAI's strong areas, which have heretofore been completely separate;
intelligent scheduling and training. This project effectively leverages off our successes in
these two fields and will allow us to approach our training customers with another product
and/or service, as described above.

Concurrent with Phase II, we will perform market research in support of the Phase II
task, User Requirements befinition. That task includes defining functionality which will
make the ITMS more commercially viable. The market research will provide focus for the set
of commercial users who are most likely to buy an ITMS. The requirements of these users
can be folded in with those of our currently committed users. Concurrent with Phase II will
be the development of features required by the commercial marketplace and development of
contacts to sell the resulting ITMS.

There are thousands of organizations which could benefit from ITMS. There also
appears to be little competition. Many training management systems exist, but these are not
automatic, merely logging and keeping track of a user's decisions, primarily regarding
attendance and scheduling. Most of these don't even do deconflicting. Thus, our ITMS will
have the significant benefit over competitors of being largely automatic and will also be more
tailored to complex training requirements.

There are three different business plans as a result of this project. The first is to sell
the ITMS itself. The design will be flexible enough that users will be able to define their own
kinds of positions jobs), teams, trainees, skills and knowledge, tasks, training requirements,
training events, resources, etc. Once a user has entered this knowledge, the ITMS will be able
to automatically track students' skills, proactively notify him of new courses, prerequisites, or
if he's falling behind; determine requirements; schedule training events (including needed
resources); and track results for individuals or teams. Industries with complex training can be

30

Stottler Henke Associates, Inc. Phase I Final Report

approached directly with ITMS, or we could sell it through companies which currently
provide training to them (such as Wicat and Flight Safety, who both serve the aviation
industry). These would also leverage off our existing extensive Intelligent Tutoring system
marketing efforts.

SHAI has completed intelligent scheduling system projects for NASA and is starting
others. SHAI scheduling products are already in use by several organizations and we are
expanding our market for such tools. We anticipate that this effort will result in additional
scheduling algorithms that we will be able to incorporate into our existing scheduling
products, thus increasing the benefits they provide and their value.

Finally, ITMS can be used as a basis to create customized ITMS solutions for
individual commercial organizations. Because it is designed for low cost application to new
training management problems, we can customize it at a low cost.

7.0 References

[Agrawal et al., 1993] "Mining association rules between sets of items in large databases, "In
Proc. of the ACM SIGMOD Conference on Management of Data, 1993.

[Allen, 19841 Allen, J., F., "Toward a General Theory of Action and Time", Artificial
Intelligence, 23, 1984.

[Beck et. al., 1997] Beck, J., Davenport, A., Sitarski, E., Fox, M., "Beyond Contention:
Extending Texture-Based Scheduling Heuristics," AAAI-98 Proceedings, AAAI Press, Menlo
Park, CA, 1997.

[Charniak, 1991] "Bayesian Networks without Tears," AI Magazine, 1991.

[Cheeseman et al., 1988] "Autoclass: A Bayesian Classification System,"
5th International Conference on Machine Learning, pp. 54, 1988.

[Fox, 1983] Fox, M. S., Constraint-Directed Search: A Case Study of Job Shop Scheduling,
Ph.D. thesis, Carnegie-Mellon University, 1983.

[Hall, 1998] Hall, B. "Training Management Systems: How to Choose a Program Your
Company Can Live With," Brandon Hall Resources, http://www.brandon-hall.com, October
1998.

[Henke, 1996] Henke, A., Artificial Intelligence Techniques for Mission Planning and
Scheduling Automation- Final Report dated July 1996, Stottler Henke Associates, Inc.

[Henke & Stottler, 1991] Henke, A.L. and R.H. Stottler. (1991), Automated Manifest
Planning: An Artificial Intelligence Approach; Phase I Final Report. Research Report.
Stottler Henke Associates, Inc., Belmont, CA, (July).

31

Stottler Henke Associates, Inc. Phase I Final Report

[Henke & Stottler, 1992] Henke, A.L. and R.H. Stottler. (1992); "Artificial Intelligence
Techniques for Scheduling Space Shuttle Processing", Proceedings of the Florida AI
Researchers Symposium, Ft. Lauderdale.

[Henke & Stottler, 1995] Henke, A., Stottler, R., Artificial Intelligence Techniques for Flight
Activities Planning, Stottler Henke Associates, Inc., 1995.

[Knorr & Ng, 1996] "Finding Aggregate Proximity Relationships and Commonalities in
Spatial Data Mining," IEEE Trans. On Knowledge and Data Engineering, 1996.

[Laird and Saul, 1993] "Sequence Extrapolation," Machine Learning Conference
Proceedings, pp. 1120-1125, 1993.

[Maher, et. al., 1997] Maher, T., Green, J., Goan, T., Artificial Intelligence Techniques for
Flight Activities Planning - Phase II Final Report, May 1997, Stottler Henke Associates, Inc.

[Mannila, 1995] "Discovering Frequent Episodes in Sequence," Knowledge Discovery in
Databases Proceedings, 1995.

[McVey et. al., 1997] McVey, C., Atkins, E., Durfee, E., Shin, K., "Development of Iterative
Scheduler to Planner Feedback", AAAI-98 Proceedings, AAAI Press, Menlo Park, CA, 1997.

[Morgado & Martins] Morgado, E., Martins, J., "CREWNS: Scheduling Train Crew in The
Netherlands," AAAI-98 Proceedings, AAAI Press, Menlo Park, CA, 1997.

[Shatkay & Zdonik, 1996] "Approximate Queries and Representations for Large Data
Sequences," ICDE 1996.

[Training Magazine, 1999] "Industry Report 1999", Oct. 1999.

[Zweben & Eskey, 1989] Zweben, M., Eskey, M., "Constraint Satisfaction with Delayed
Evaluation" Eleventh International Joint Conference on Artificial Intelligence, Detroit,
Michigan, August, 1986, pg. 875.

[Zweben & Fox, 1994] Zweben, M., Fox, M. S., eds., Intelligent Scheduling, Morgan
Kaufrnann, 1994.

32

Stottler Henke Associates, Inc. Phase I Final Report

Appendix A Phase I Prototype Design

Introduction

This document is a design specification for the Phase I part of the ITMS project. The purpose
of this part of the project is to implement and demonstrate a proof-of-concept system that will utilize
Al techniques to improve the training management process (i.e. increase training efficiency, streamline
the course revision process, etc.) This project will be done in Allegro Common Lisp dynamic object
oriented system.

A.1 ITMS architecture

The intelligent training management system was originally conceived as a standalone
application, to be developed in Lisp under Windows. Further knowledge elicitation revealed that there
was a defined need for a Web interface to much of the ITMS functionality, and so the Web interface
(implemented as a number of CGI scripts written in Pert) was subsequently added to the existing Lisp
application. The current system is schematically shown in figure 1. The Phase I setup is less than
ideal for a number of reasons, and a number of enhancements will be made in Phase II that should
increase the usability of the current ITMS prototype.

Web server machine Web Student

ITMS Wbsre ae

administrator ITMS standalone "a
lisp application. a.[t

WebWeb.. Supervisor
content ae [[

Figure 1.

1.) Single language. Since ITMS consists of two distinct pieces, there is a certain overhead involved in
converting data from the form the lisp application understands to the form the web interface understands.
This overhead will be eliminated entirely in Phase II, since ITMS will consist exclusively of a Web interface
over a database and a reasoning engine.

2.) Pert and Apache integration. In Phase I, the Apache web server was used to generate web content generated
by CGI scripts written in Pert. The basic setup used in Phase I was such that the entire perl interpreter, the
cgi script, and all the data files used by the script had to be loaded into memory each time the user submitted
an HTTP GET or POST request (i.e. each time the user pressed a button on the Web interface). This
presented significant overhead, which can largely be eliminated by the use of mod.perl, a perl module that
provides Perl/Apache integration. After modperl is installed and compiled into Apache, the perl interpreter
itself is always resident in memory and doesn't need to be loaded each time, and cgi scripts and data files
are cached in memory as well after their first execution. Installation of mod.perl is known to result in two-
fold increase in response times.

33

Stottier Henke Associates, Inc. Phase I Final Report

3.) Script separation and modular design. Additional speedup can be obtained by separating script functionality

into distinct scripts (so only a portion of the scripts need to be executed during each GET or POST request).

A.2 ITMS skill graph structure

(not implemented yet)

Predicates (links) relating graph nodes:

Subtask(A, B) True if A is a subtask of B

Example: Subtask(Disassemble power supply, Repair power supply)

Prerequisite~f(A, B) True if A is a prerequisite of B

Example: Prerequisite~f(File systems, Networked file systems)

Parent~f(A, B) True if A is a parent of B

Example: ParentOf(Analytic ability, Computer systems)

SkillLevel(A, X) True if the skill level of A is X

Example: SkillLevel(MechanicalRepair, 50)

Inferences we want to make:

SkillLevel(B, L) A Prerequisite~f(A, B3) -~SkillLevel(A, L)
VX (Subtask(X, A) A SkillLevel(X, L)) -~SkillLevel(A, L)
Subtask(X, A) A SkillLevel(A, L) --- SkillLevel(X, L)
Parent~f(A, B) A SkillLevel(A, L) -> SkillLevel(B, C Q L, 0 < C < 1.

A.3 ITMS GUI

ITMS GUI will be a conventional Microsoft Windows menu-based GUI. The current GUI structure is
shown in figure 2.

34

Stottler Henke Associates, Inc. Phase [Final Report

File Edit View Tools

New course L. Edit career graph View courses Options

Exit

Figure 2.

Figure 3 shows the dialog boxes that make up the ITMS GUI, and how the user navigates through them.

I. ITMS GUI

b outent dialog S E C reer dialog
_ Eit aree grph _ Cree diL Suts grap p ere ds' s1'l Su'bts iaog.~'es

Figur 3.w dialog
35 di [[Newdentdialssessment

Edi sk atdn caee Skill Stident sklWdao

Cors prl tviewereperqist

re, seachti oous dialog skilt u de n t viwe sk i ll g rap 'h

vieiewer

_ Abut dalog tudet career dialog]

Figure 3.

35

Stottler Henke Associates, Inc. Phase I Final Report

A.4 ITMS classes and data structures (lisp application)

Class ITMS

;This is the ITMS inference engine.

Slots:

:Career-graph ;the global copy of the career hierarchy (obs, titles, rank, etc.)
:Skill-graph ;the global copy of the skill hierarchy

;; These slots can end up consuming large amounts of memory, and so will end up being obtained;;
from disk as needed (in Phase II at any rate).

:Students ;student models currently in the system.
:Courses ;course models currently in the system.
:Schedule ;a list of events sorted by date.
:Mailbox ;e-mail interface.
:DL-supervisor ;contact information for the Distance Learning supervisor.
:Old-versions ;a list of older versions of career milestones.
:Time ;current time

Methods:

;; General methods.
(read-itms file) ;reads the ITMS structure from a datafile.
(write-itms itms file) ;writes a given ITMS structure to a datafile.
(init-object object stream) ;initializes ITMS from a given input stream.
(print-object object stream) ;writes ITMS to a given output stream.

(update-skills graph) ;propagate global skill hierarchy changes

(update-career graph) ;propagate global career graph changes

;; Event methods

(clear-event id) ;clears the event associated with id from the event queue.
(trigger-events date) ;triggers events scheduled for a particular date.
(schedule event) ;Schedules an event for some future date.

;; Scheduling m. ethods ;These methods schedule various events to occur at a specific time in
;the future.

(schedule-career-survey student career-name days)
(schedule-falling-behind-message student days plan-days)
(schedule-timeout-message address cause days)
(schedule-skill-decay student days)

E-mail creation methods ;These methods create e-mail message that ITMS sends out.

(make-new-course-version-message)
(make-new-career-version-message)
(make-falling-behind-message)
(make-timeout-message)
(make-describe-plan-message)
(make-no-legacy-career-string)

36

Stottler Henke Associates, Inc. Phase I Final Report

(make-create-more-versions-message)
(make-legacy-career-string)
(make-skill-and-course-string)
(make-not-enough-time-message)
(make-goal-accomplished-message)
(make-useful-courses-message)
(make-create-useful-courses-message)
(make-ready-message)

;; E-mail sending methods ;These methods send e-mail messages out.

(send-useful-courses)
(send-ready-message)
(send-course-info-message)
(send-student-info-message)
(send-itms-help-message)

;; E-mail response methods ; These methods are called by mailbox class in response to
certain e-mails ITMS receives.

(update-skills-and-decay)
(update-career-goal)
(career-completed)
(update-job-skills)
(update-course-skills)
(update-course-enrollment)
(career-assignment)

Class ITMS-gui

;Class defining the main GUI for ITMS.

Slots:

:itms ;the slot holding the itms engine itself
:new-student-dialog ;Various dialog box classes that ITMS displays in' response to user ;action.
:new-course-dialog
:skill-graph-editor
:career-graph-editor
:student-search-dialog
:course-search-dialog
:demo-interface-dialog
:option-dialog
:error-dialog
:about-dialog

Methods:

(initialize-instance :after) ;This method sets a number of variables ITMS-gui depends on.

(new-student) ;These methods are invoked whenever the user selects the appropriate
;action from the menu.

(new-course)
(edit-skill-graph)
(edit-career-graph)
(view-student)

37

Stottler Henke Associates, Inc. Phase I Final Report

(view-course)
(demo-interface)
(options)
(about-itms)

Class Student

;Class defining the student in ITMS.

Slots:

:first-name ;Personal information...
:last-name
:e-mail ;The student's e-mail address (very important).
:address
:city
:state
:zip-code
:supervisor ;The student's supervisor contact informrition.
:old-skill-levels ;Student's old skill levels (used for skill decay estimation)
:current-list ;The list of current career assignments.
:goals ;The list of career goals.
:plan ;A graph representing the student's plan.
:courses ;A list of courses taken by the student.
:career ;A list of career milestones taken by the student.
:skills ;The student's local copy of the skill graph
:os ;Student's OS
:cpu ;Student's CPU class
:memory ;How much memory the student has.
:disk ;How much disk space the student has.
:cd-rom ;Does the student have a CD-ROM?
:internet ;Does the student have internet access?

Methods:

(update-skills) ;Update student skills to reflect global hierarchy changes
(clear-skills) ;Remove skills no longer present in the global hierarchy
(update-career) ;Update student career to reflect global hierarchy changes
(can-run job) ;Returns true if the student's hardware/software supports a given career

;milestone.
(ready job) ;Returns true is the student has sufficient skills to undertake a given career

;milestone.
(decay-skills) ;Decays the student's skills.

Class Job

;Class representing a career milestone (a course, a job, or a rank, in our domain).

Slots:

:name ;The job name
:number ;Version number
:type ;job, course, or rank.
:supervisor ;Contact info for the supervisor.
:length ;Minimum length one must spend on the job.

38

Stottler Henke Associates, Inc. Phase I Final Report

:students ;The students previously enrolled here.
:skills ;Skills required and taught by this milestone.
:skills-estimated ;Skill estimates for this milestone.
:os ;OS needed for this milestone (if any).
:cpu ;CPU needed for this milestone (if any).
:memory ;memory needed for this milestone (if any).
:disk ;disk needed for this milestone (if any).
:cd-rom ;Does this milestone require a CD-ROM.
:internet ;Does this milestone require interet access.

Methods:

(update-skills) ;updates skills in response to changes in the global hierarchy.
(clear-skills) ;clears skills no longer present in the career hierarchy.

Class Message

;Class representing an e-mail message.

Slots:

:data ;The message itself.

:attachments ;Any attachments to the main message body.

Methods:

(Send message) ;Sends a message through the e-mail system.

Class Skill

Slots:

:name ;The skill name
:decay ;The default decay constant for the skill
:expertise ;the expertise of a particular student in a skill.
:level-needed ;skill level prerequisite for a particular job or rank.
:level-developed ;skill level developed at a particular job.
:assessments ;a list of ways to assess the skill (sorted by assessment cost).

Methods:

Class Graph

;A non-intrusive implementation of a directed graph container. Supports arbitrary data structures ;as
nodes, can apply functions to nodes in hashed, or depth first order (so far). Adds and removes ;nodes
efficiently (with a function that cleans up edges that is called after a series of node inserts ;and
removals).

Slots:
:roots ;the ids of root nodes of the graph
:acyclic-p ;is true if the graph has no directed cycles
modes ;the nodes of the graph
:depth ;the maximum depth of the graph

39

Stottler Henke Associates, Inc Phase I Final Report

Methods:

(insert-node node id parent-ids child-ids)
(remove-node id) ;removes a node and all incoming and outgoing edges.
(remove-subtree id) ;removes a node and its entire subtree.
(remove-node-splice id) ;removes a node, but connects all of its parents to all of its children.
(insert-edge parent-id child-id)
(remove-edge parent-id child-id)
(update-graph) ;is called after a series of insert-node or remove-node calls. Inserts and

;removes edges to make the graph consistent.
(apply-to-graph function) ;applies a specified function to all nodes in the graph.
(dfs pre-visit post-visit) ;applies pre-visit and post-visit functions to all nodes in the graph in

;depth first order.

Class Graph-node

;Graph node wrapper around data structures stored in the graph class.

Slots:

:id ;the id of the graph node, used for fast retrieval
:data ;the actual data stored in the node
:parents ;the ids of parents of the node
:children ;the ids of children of the node
:pre-visit ;used for cycle detection and graph traversals in specified order
:post-visit ;used for cycle detection and graph traversals in specified order
:depth ;the depth of the given node

Methods:

None

ITMS classes and data structures (web interface)

The web interface classes and data structures mimic the lisp data structures in Perl. The script
lisptoperl.pl reads the ITMS data file into perl data structures which are then prom~ty serialized. Then,
whenever the CGI scripts need certain information about the student or a career milestone, the appropriate file is
read in. While the lisp application maintains one datafile, the web interface stores information for each student
and each course and career milestone in its own file. This is done for efficiency and safety.
We can ultimately expect large numbers of requests for this information, and we don't want to read in more
information from file than necessary to satisfy a particular query (which will always be about a particular
student, or a particular career milestone). Having to read in an entire datafile for each request would be
prohibitively expensive.

ITMS server side authentication

ITMS uses the port of Apache web server for Windows. In order to let only authorized personnel
access ITMS information on the web, server side authentication has been implemented. Authorization is granted
and removed by means of two scripts, add_person.pl and remove_person.pl, respectively. The syntax is:

perl addperson.pl [name] [authorization-group] [password]
perl removeperson.pl [name] [authorization._group]

When the first script is ran an additional person is granted access with login [name], and password [password] to
all information permitted to [authorizationgroup]. Some examples of authorization groups are Student,
Course_author, Supervisor, Administrator.

40

Stottler Henke Associates, Inc. Phase I Final Report

Appendix B Phase I Prototype User Guide

The phase I implementation of the ITMS project consists of two heterogeneous parts:
the GUI written in Allegro Common Lisp, and the web interface implemented as a series of
Perl CGI scripts. The two parts interact through a file interface. Whenever ITMS generates a
data file it gets converted to the format the Perl scripts can understand.
The ITMS GUI is meant to be ran periodically on the machine containing the web server and
the CGI scripts. The GUI can be used to add and remove students, and edit the skill and
career hierarchies. Furthermore, all e-mail communication currently goes through the GUI.
The web interface is used to display useful information ITMS has collected and inferred on
the web.

B.1 ITMS GUI Guide

File Edit View Tools
_ New student Edit skill graph View students [Demo interface

Save j Ld Edit career graph View courses L Oons

Exit

Figure 1. * TM

Figure 1 shows the top-level choices available to a user of the ITMS GUI. Here is a
short description of what each item does:

New student: Pops up the new student dialog box that allows the user to enter new

student information, specify skills the student may have, etc.

The following buttons are available in the student dialog:

OK: This finalizes the new student's settings and, if the user didn't
forget to enter something, adds the student.

View skills: These three buttons view student information, however
View career: in the case of a new student this information is not yet
Courses taken: available.

Cancel: This cancels everything, and doesn't add the student.

41

Stottler Henke Associates, Inc. Phase I Final Report

Save: Saves the current state of ITMS into a datafile, and converts the file
into a format understood by Perl CGI scripts.

Exit: Saves the current state of ITMS and exits from the GUI.

Edit skill graph: Pops up the skill graph editor dialog box that allows the user to modify
the global ITMS skill graph (and edit individual skills). No conventional buttons are available
in this editor, all actions are performed used the toolbar buttons. There are seven of these
buttons and they look like this:

F0 New node: This pops up a new skill dialog. If the user doesn't cancel out of that
dialog box, the new skill will be added.

Delete node: This removes the currently selected skill (if any) from the global skill
hierarchy.

[I Connect node to child: One must have already selected a skill prior to clicking
this button. Then the next skill you select will become a child of the currently selected
skill.

Connect node to parent: One must have already selected a skill prior to clicking
this button. Then the next skill you select will become a parent of the currently
selected skill.

Delete child: One must have already selected a skill prior to clicking this
button. Then the next skill you select will cease to be a child of the currently selected
skill.

nt Delete parent: One must have already selected a skill prior to clicking this
button. Then the next skill you select will cease to be a parent 6f the currently
selected skill.

15 Lose focus: Pressing this button causes the editor to unfocus any skill that was
previously selected.

Edit career graph: Pops up the career graph editor dialog box that allows the user to
modify the global ITMS career graph (and edit individual career milestones). No
conventional buttons are available in this editor, all actions are performed used the toolbar
buttons. These buttons are identical to those found in the skill editor. The only changes are
that the new node button will pop up a new career milestone dialog box, and all editor
changes affect the career hierarchy, not the skill hierarchy.

View students: Pops up the search dialog that allows the user to search for individual
students already in the system. This dialog shows the number of students currently in the
system, a scroll-box that allows the user to select the criterion to search by (first name, last

42

Stottler Henke Associates, Inc. Phase I Final Report

name, e-mail, etc)., a text box allowing the user to type their search key word, and a series of
buttons:

Search: Returns a list of matches to the user's query.

New search: Resets the search, removes all matches.

OK: Commits all changes, and exits from this dialog box.

Delete: Deletes the selected match from the system.

Cancel: Is identical to OK in this context.

Furthermore, double-clicking on any match will bring up a dialog box showing information
on the match (in this case a student dialog).

View courses: Pops up the search dialog that allows the user to search for
individual courses already in the system. (Note: courses distinct from the career graph are
deprecated).

Demo interface: Pops the demo interface dialog box that allows the user to move ITMS
time backwards and forwards, and to receive 'e-mails.' The dialog box has three text fields
that allow the user to specify the month, day, and year that ITMS considers to be 'today.'
Furthermore, there is a text field where a user can enter a file name that will be read in by
ITMS as an 'incoming e-mail.' There are also two buttons:

OK: This exits the demo interface dialog, and sets 'today's date' to be
whatever the user last set in the date text fields.

Receive message: This 'receives an e-mail message' corresponding to the file
specified by the user in the appropriate text field.

Options: Pops up the options dialog box that allows the user to modify e-mail
settings (the server address, mail protocols, etc.) Not currently used, since not all of the e-
mail functionality is fully in place.

About: Pops up the about dialog box. This box contains ITMS copyright
information.

B. 2 ITMS Web Interface Guide

The main ITMS web page contains three buttons:

Login: This buttons triggers Apache server side authentication. In order to
proceed, the user must provide a correct login and password. If the user succeeds in
doing so, he will obtain credentials corresponding to the group his login is in for the

43

Stottler Henke Associates, Inc. Phase I Final Report

duration of the browser session. If the user successfully logs in, he ends up in a page
corresponding to the group his login is in. Let's assume the user is in the 'student'
group. Then when he logs in, he will see a page displaying his name, contact
information, etc. There will also be 5 buttons:

Refresh: This refreshes the page, committing any changes the user made
to his information.

View skills: This takes the user to a page showing his skills in bar chart
form. If the skill has children, then clicking on the bar corresponding to the
skill will produce a different bar chart showing the sub skills. There are 2
buttons on this page:

Back: This takes the student back one level in his bar chart browsing.
If the student as already seeing the bar chart corresponding to all the
root nodes in the graph, he is taken to the student's page, but if not, he
is taken to a page showing the bar chart containing the parent of the
skills he currently sees.

Back to student's page: self-explanatory.

What's new: This takes the user to a page similar to the main 'what's new'
page, the only difference being that only changes and updates to career
milestones the student already accomplished are shown here.

Career counseling: This takes the user to a career counseling page that
allows him to select career goals and get advice from ITMS. The page shows a
scroll-list containing all career milestones the student accomplished, a text box
where the user can enter the number of days he is allocating for achieving his
career goal, and a list of yet-unaccomplished career goals. There are two
buttons on this page:

Show plan: This button takes the student to a page showing the plan
calculated to achieve his goal. The plan page always has the following
two buttons:

Back to career counseling page: self-explanatory

Back to student's page: self-explanatory

Furthermore, if the plan contains career milestones which require some
skill improvement on the part of the student, a button labeled 'find
courses' appears next to each such career milestone. Then clicking that
button will list all career milestones which will improve the student's
skills to the required levels.

44

Stottler Henke Associates, Inc. Phase I Final Report

Back to student's page. self-explanatory.

Back to main Rage: self-explanatory.

What's new: This button takes the user to a page containing a list of hyperlinks
corresponding to new career milestones. If the user attempts to follow a hyperlink
here, he will have to get past Apache server side authentication (we do not want any
person on the Internet to view career milestone information). The only button here is:

Back to main page: self-explanatory.

Career milestone information: This button takes the user to a page containing a
list of hyperlinks corresponding to all career milestones currently in the system. If the
user attempts to follow a hyperlink here, he will have to get past Apache server side
authentication. The only button here is:

Back to main page: self-explanatory.

45

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

DOCUMENT 3

Development Manual for 3D World Virtual
Environment Software

AD-A378892

December 1999

Sytronics Inc.
Dayton, OH

4

THIS PAGE INTENTIONALLY LEFT BLANK

AFR.L-HE-WP-TR-2000-0017

UNITED STATES AIR FORCE
RESEARCH LABORATORY

DEVELOPMENT MANUAL FOR 3D WORLD
VIRTUAL ENVIRONMENT SOFTWARE

A. Annette L. Mc Coy

SYTRONICS, INC.
4433 DAYTON-XENIA ROAD

DAYTON OH 45432

EIEISusan K. Schnipke
OHIO STATE UNIVERSITY

DEPARTMENT OF PSYCHOLOGY
COLUMBUS OH 43210

*-R,

... 0

SI- DECEMBER 1999

....... INTERIM REPORT FOR THE PERIOD APRIL 1998 TO NOVEMBER 1999

I. I Human Effectiveness Directorate
Approved for public release; distribution is unlimited Crew System Interface Division

I I 2255 H Street

Wright-Patterson AFB OH 45433-7022

20000627 248 laL f

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that ihe Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please do not request copies of this report from Air Force Research Laboratory. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingrnan Road, Suite 0944
Ft. Belvoir, Virginia 22060-6218

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2000-0017

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MARIS VIKMANIS, DR-IV
Chief, Crew System Interface Division
Human Effectiveness Directorate
Air Force Research Laboratory

REPORT DOCUMENTATION PAGE Form Approved

I OMB No. 0704-0188

Public reporting burden for this cotlection of information is estimated to average 1 hour per response. includng the time for revewing instruction$, searching existing data sources, gatheringend omaintainng he datahneded endcompleting andreviewdn trecollectionof nfomation Send comments regaingthis buenesmateoranyoheraspect ofthiscolectonof

inform ion, in uding suggestions for reducing this burden, to washington Headquarters Services, Directorate for Inforatlon Operations and Reports, 1215 Jefferson Davis Highway. Subs
1204, Ajtington, VA 22202-4302 and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
4 December 1999 Interim, April 1998 to November 1999

4. TITLE AND SUBTITLE 15. FUNDING NUMBERS

C: F41624-94-D-6000
Development Manual for 3D World Virtual Environment Software PE: 62202F
6. AUTHOR(S) PR: 7184

TA: 14
Annette L. McCoy* WU: 25
Susan K. Schnipke**

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

*Sytronics, Inc.
4433 Dayton-Xenia Rd, Dayton OH 45432

•* Ohio State University

Department of Psychology, Columbus OH 43210
9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Air Force Research Laboratory
Human Effectiveness Directorate
Crew System Interface Division AFRL-HBE-WP-TR-2000-0017
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7022

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report documents a software package called 3DWorld. The software provides the environment and scenario
development tools necessary to create a virtual environment for human performance research. This report contains
step-by-step instructions on how to develop and run virtual environments, as well as an in-depth description of the
program structure.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Virtual Environments Human Performance 60

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) Prescribed by ANSI Std Z-39-18
298-102 COMPUTER GENERATED

THIS PAGE INTENTIONALLY LEFT BLANK

ii

List of Figures

Figure 1 - 3. Sequence of captured screen images of operator walking down hallway 2
Figure 4 - 9. Captured screen images of environments used in situation awareness 3
Figure 10. M ap Editor drawing board ... 4
Figure 11. Examples of changing parameters in the USEKEYS mode ... 11
Figure 12. Officwin.pcx as it appears in a paint program .. 12
Figure 13. Officwin.pcx as seen as a wall in the Environment 12'
Figure 14 Bathroom.pcx door Figure 15 Bathroom.pcx opendoor window 13
Figure 16. Table.pcx as it appears in paint program 14
Figure 17. Table.pcx as seen as an object in the environment .. 14
Figure 18. Overhead Image of a map .. 15
Figure 19. Schedule.pcx as an Overhead Image ... 16
Figure 20. (X,Y) Coordinate System and Angles .. 23
Figure 21. Example of W orld Editor screen .. 29
Figure 22. Example of mapdata.def menu ... 30
Figure 23. Example of mapdata.def menu .. 30
Figure 24. Example of editing the foreground color for the map piece icon in the mapdata.def file 32
Figure 25. M ap Editor ... 33
Figure 26. (X,Y) Plane ... 34
Figure 27. Angles in the M ap ... 35
Figure 28. M ap Editor Selection Box .. 35
Figure 29. Navigation Keys .. 39
Figure 30. Example of Dialogue W indow .. 41
Figure 31. Copier.pcx .. 48
Figure 32. Copier.pcx Replicate Configuration ... 49
Figure 33. Rfile.pcx .. 49
Figure 34. Rjfile.pcx Replicate Configuration .. 50
Figure 35. Phone.pcx .. 51
Figure 36. Phone.pcx Replicate Configuration .. 51
Figure 37. Menu.pox ... 52
Figure 38. M enu.pcx Replicate Configuration .. 52
Figure 39. Menu.pcx Replicate Configuration (continued) .. 53

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

1.0 INTRODUCTION

3D World is a virtual environment software package created by scientists in Air Force Research
Laboratory (AFRL) at Wright-Patterson Air Force Base, Ohio. The program, which runs under MS-
DOS, allows users to design virtual environments, customize scenarios, navigate within the
environments, and collect experimental data.

Gerald Dalley, a summer intern with AFRL, developed the original version of 3D World primarily for
studying situation awareness issues. A general definition of situation awareness is "the perception of
elements in the environment within a volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future," (Endsley, 1993). Using 3D World environments,
we can study situation awareness by researching how people perceive their surroundings, navigate
within those surroundings, and remember locations of objects. To date, 14 situation awareness studies
have been conducted using 3D World environments. Results of six of the studies have been published
(Colle & Reid, 1998; Colle & Reid, 1999), and the others are a series of studies which are near
completion. In addition, 3D World environments were also used to study workload issues at Ohio
State University (Nygren, Schnipke, & Reid, 1997) for which the environments were customized to
measure time pressure, effort, and stress.

In this paper, we will be explaining how to build an environment, how to view and navigate within the
environment, how to customize scripts or scenarios, and how to collect data while running the
program. First, read the overview which will provide you with general information about the program
and give you a better sense of what the 3D World program has to offer. Then go on to the more
detailed sections of the manual for in-depth information about creating environments.

2.0 OVERVIEW

Building an environment in 3D World can be very simple or very complex, depending upon what you
want. You may want a simple world which consists of a small building with a couple of rooms in
which you are free to roam around, or you may want a multi-level, multi-room environment, equipped
with stairs and elevators, and monitored movement. We will briefly overview what is involved in
building a small, basic environment so you'll have an idea of what to expect.

To begin, take a look at the following illustrations to get an idea of what an environment may look like
on the screen. Figures 1, 2, and 3 are a sequence of captured screen images as the operator is walking
down a hallway.

Figrei

Figure 1

Figure 3

Figures 4 through 10 are various captured screen images of environments used in situation awareness
(Colle, Reid, 1997) and workload (Nygren, Schnipke, 1997) studies.

Figure 4 Figure 5

• ' ,. . . .' "' d".A .

.-. .0p N ...

Figure 6 Figure 7

Figure 8 Figure 9

3

Figures 1-9 are examples of what you would see while 'viewing' the environment. The
environment is comprised of several pictures called image files. Image files are typically
.pcx files created in a paint program. Each picture (image file) represents a wall or an
object in a room. For example, one picture could be a plain wail. If you organized
pictures of a plain wall in the form of a square, you'd have a square room. To add a door,
you would include a picture of a wall with a door on it, or you could add a wall with a
mirror or window, etc. Organize these pictures to form rooms and hallways and you
create an environment. All of these image files are gathered into one of two Icon
Description files: mapdata.def or objectdata.def.. Mapdata.def contains the image files
which represent walls of the enviroment. Objectdata.def contains images which represent
objects within rooms, such as a chair. Both of these files are displayed on a drawing
board called the Map Editor. The Map Editor is the tool used to build or create the
environment. See Figure 10.

Drawing
iTools

adt
Drawing -Objects

Board I

--- I

...... - W al"lsj
•, ,I

- w - in double

C43..2S) Map: n Oe O - Plain obJ: Head table

I II
(x,y) Wall Piece Object Piece

Figure 10. Map Editor drawing board

As you see in FigurelO, the object and wall pieces are listed to the right of the actual
drawing area. To create an environment, you simply select a map piece by clicking on it
with the mouse, then click on the drawing board where you want to place it (more
detailed instructions will be provided later). For example, the above drawing area shows
five individual environment segments, which can represent different levels of one
building, or different environments all-together. It also shows a long corridor which

4

appears about midway down the drawing board. The line segments on the board
represent the walls of the environment and the circles, squares, etc. represent objects
within the rooms and hallways. Listed in the object icon menu, there are also startpoint
arrows to choose from which you select and place at the position you want to start
operator control in the environment. Wherever the arrow is placed is where you will
begin viewing the environment when running the 3D program. More information is
provided on the Map Editor in Section 4.2.

To briefly summarize, to create and operate in a virtual environment, you 1) collect
multiple image files which represent walls and objects you want in your environment
(See Section 3.1), 2) list all images in the Icon Description files to be displayed on the
Map Editor, 3) build the environment using the Map Editor drawing board, 4) create a
scenario, 5) run the 3D program, and 6) navigate in the environment and collect data.

Of course, this is a very simplified overview. More detailed information is provided
throughout the manual. For questions regarding this document or the 3D World Program,
see the references at the end of the manual.

*Note: For the remainder of this manual, the term "user" refers to the person using the
3D World software to develop the environments; "operator" refers to the person who is
navigating in the environment in the run mode.

3.0 UNDERSTANDING THE FILES YOU WILL USE
3D World requires that the following files be present within a directory in order to create
a working environment. These files can be categorized into five different groups:

1) Image Files (.pcx files)

2) Icon Description Files
a) objdata.def
b) mapdata.def
c) tools.def

3) World Database File (3d.map)

4) World Development Files
a) editmap.exe
b) editor.exe
c) initmap.exe

5

5) Loading and Running Files
a) .way
b) egavga.bgi
c) map.3dm
d) 3d.exe

3.1 Image Files
In order to create an environment, you need image files which portray walls, doors,
objects, etc. 3D World uses .pcx image files created with an independent paint program.
All .pcx files must be 128 x 128 resolution, 256-color .pcx graphics files. In general, the
same color palette should be used for all images. The maximum number of .pcx files you
may use in any single environment is 254.

3.2 Icon Description Files
The Icon Description files define the map piece icons and drawing tools which will be
used to build the environment on the Map Editor drawing board (see overview). There are
three different Icon Description files: 1) mapdata.def, 2) objdata.def, and 3) tools.def.
The mapdata.def and objdata.def files specify the name, color, and shape of the wall and
object map pieces (respectively) to be used in the Map Editor. The Tools.def file defines
the tools which are available to assist in building the environment. The format is similar
for all three files.

3.2.1 MaDdata.def
An example of a mapdata.def file is as follows:

0000 eeff plain
0001 7aff window
0002 66cc door
0003 29ff mirror
0004 1lff clock
00FF 00ff empty

*Note: The following line should ALWAYS appear at the end of the mapdata.def file:

00FF 00FF Empty

The first field of numbers represents the order of the item in the file. The second field
defines that item's icon image. The icon will appear as two lines on the drawing board
map. The first two positions in the second field define the color of the icon; the last two

6

positions define the bit patterns for those lines (for more information on how bit'patterns

work, see setlinestyle documentation in either Borland Pascal or Turbo C manuals).

The line colors are defined as follows:

0- Black 8 - Dark Gray
1 - Blue 9 - Light Blue
2 - Green A - Light Green
3 - Cyan B - Light Cyan
4-Red C - Light Red
5 - Magenta D - Light Magenta
6 - Brown E - Yellow
7 - Light Gray F - White

The third field is the descriptive name for the wall icon. The descriptive name does not
need to be the same as the .pcx file it represents. The icon and its descriptive name will
appear in the Map Editor and is for identification purposes only.

Using the example mapdata.def file above, the mirror is 0003 (the fourth line) on the list.
(*Note - the actual name of the mirror .pcx file must also be listed fourth in the 3d.map
file discussed in Section 3.3). The icon that will appear on the map to represent this
mirrored wall will be a pair of lines, one green (#2) and one light blue (#9).

The first and second fields are all hexadecimal numbers (all digits 0..f) and MUST be
four characters long. Each field MUST be separated by one and only one space.
Additionally, there MUST be NO blank lines or lines that do not follow the above
conventions.

3.2.2 Ob.data.def
There are two differences between mapdata.def and objdata.def: 1) specific starting point
lines must be included in objdata.def, and 2) the images are presented as objects rather
than walls in the environment. An example of an objdata.def file follows (the required
starting point lines are in bold):

0000 1056 Box
0001 60f0 Tree
0002 b016 Chair
0003 5120 Person
0OF7 20F0 Starting point
00F8 20F1 Starting point
00F9 20F2 Starting point
OOFA 20F3 Starting point
OOFB 20F4 Starting point
OOFC 20F5 Starting point
OOFD 20F6 Starting point

7

OOFE 20F7 Starting point
00FF 0010 Empty
The object icons will appear on the map as symbols such as a circle or square. Here is the
key for icons in Objdata.def:

1st position
0-F (see above): foreground color

2nd position
0-F (see above): background color

3rd position
0 - print character in 4th position
1 - solid
2 - half-tone
3 - solid w/decoration
4 - half-tone w/decoration
5 - circle
6 - horizontal door
7 - vertical door
8 - top half foreground, bottom back
9 - dot
A - tall upper left
B - short upper left
C - centered
D - x (associated with 4th position)

0 - no background
I - show background bar
2-f - reserved

E - outline
F - arrow (direction determined by 4th position)

4th Position
When D is in 3rd position:

0 - no background
1 - show background bar
2-f - reserved

When F is in 3rd position:
0 - north
I - northeast
2 - east
3 - southeast
4 - south
5 - southwest
6 - west

8

7 - northwest
*Note: If D or F is not in 3rd position, the 4th position is ignored, but a number must be
inserted.

3.2.3 Tools.def
The Tools.def file lists the 'drawing tools' and defines the shape and color of their
corresponding icons which appear in the Map Editor. The "toolbar" is similar to those
used in independent paint programs. YOU SHOULD NOT EDIT THE TOOLS.DEF
FILE. There will be more information regarding the tools in Section 4.2.2.1.

3.3 World Database File (3d.map)
3d.map is considered to be the world's database. It calls up and defines all image files as
walls or objects, it calls up the environment map, and it defines walking parameters,
turnrate, and other miscellaneous parameters. It defines any overhead images (to be
discussed later in 3.3.5) and Help screens to be used in the environment. There are six
major sections to the 3d.map file: 1) map - defines the map for the environment, 2)
parameters - defines the walking parameters, 3) pic - defines the wall images, 4) obj -
defines the object images, 5) overhead - defines the overhead images, and 6) help -
defines the help screens. Here is an example of an entire 3d.map file:

[map]
map.3dm

[parameters]
stepHeight .50
eyeLevel 5.0
speed 31
stepDist 3
tumRate 100

[pic]
wall1.pcx
basewall.pcx
poster.pcx
sign.pcx
window.pcx window
door.pcx door
windoor.pcx door window
opendoor.pcx opendoor window

[obj]
table.pcx

9

[overhead]
map.pcx
Cafeteria
Conference

[help]
help.pcx

3.3.1 Fmap1 section

The (map] section calls up the map of the environment which is a file named map.3dm.
This is the map that is created and edited in the Map Editor and it is always saved as
map.3dm. Only the map.3dm file can be loaded in this section, therefore the following
lines must appear in the 3d.map file:

[map]
map.3dm

If you would like to have multiple versions of maps, simply rename other versions (i.e.,
mall.3dm or kitchen.3dm) and keep them in the 3D directory. Just remember that the
map you want to view in the map editor must be called map.3dm.

3.3.2 [parameters] section
This section sets up the walking parameters for 3D World. The stepheight controls the
"bobbing" sensation when walking. If this value is increased, the "bobbing" sensation is
increased. The eyelevel is the height of the field of view. In USEKEYS mode, the speed
dictates how many "steps" it will take to cross a coordinate block of the map, which
represents 8 square feet. The stepdist should be an estimate of how long the step is,
however, changing the value does not seem to change the actual step distance. The
turnrate is how many key presses it takes to move a certain number of degrees in a
circle. Step height, distance, and eye level are measured in units of feet, walking speed in
miles per hour, and turning rate in degrees per second. These units will vary according to
the computer you are using and how the waypoint file is set up to navigate; i.e., in
USEKEYS or USEZOOM mode (see 3.5.1.1). Using a 486 DX-4, 100mhz computer
with an Intel processor, and the USEKEYS mode set in the waypoint command file, the
following parameters "seem natural":

[parameters]
stepheight .50
eyelevel 5.0
speed 31
stepdist 3
turnrate 100

10

You may change any of these values to suit your needs. Remember, the values are highly
dependent upon the computer you are using so there are no set values defined. If no
values are entered or if any values exceed the 8-foot boundaries of a coordinate block, 3D
World will give a short error message telling you what the problem is. The step distance
must be entered after the speed, and if any values are changed, any .mov files (see 3.5.1.5)
that are being used must be rerecorded. Here are some examples of how changing the
above parameters effect the keystrokes in the USEKEYS mode:

turnRate 100 = 71 keystrokes for a complete circle.
0 5per keystroke.

tumRate 200 = 40 keystrokes for a complete circle.
---= 90 per keystroke.

speed 31 3 blocks = 6 keystrokes.
4 blocks - 11 keystrokes.
7 blocks = 16 keystrokes.

speed 12 3 blocks = 13 keystrokes.
4 blocks = 17 keystrokes.
7 blocks = 45 keystrokes.

Figure 11. Examples of changing parameters in the USEKEYS mode

Changing parameters in the USEZOOM mode will not show significant differences.
Although all parameters must be entered, the important parameters are the stepHeight and
the eyeLevel in this mode.

3.3.3 rpie] section

The [pic] section defines the image (.pcx) files to be used for the environment's walls.
These files must be in the same order as the items in the mapdata.def file (section
3.2.1) in order for the world editor to accurately represent the environment. The
descriptive name in the mapdata.def file need not be identical to the actual .pcx filename,
but the order should be exact. Here is an example of the [pic] section containing three
image files.

[pic]
bluewall.pcx
bathroom.pcx
officwin.pcx

11

There are three features that can be added to a basic wall. The first feature is to make part
of the wall piece transparent. The second feature is to have a door that can be opened
and walked through. The last feature is to have an open door which can be walked
through.

3.3.3.1 Partial Transparency
This feature allows part of the wall to be transparent. This is useful for making windows

and open doorways. The part of the image file that should be transparent must be black.
The .pcx filename must be followed by the word window in the 3d.map file to take on
transparent qualities. For example, the image file officwin.pcx listed above refers to an
office window. To make the black areas appear as a window, you must type the word
window following the filename.

Example:
officwin.pcx window

j

Figure 12. Officwin.pcx as it appears in a paint program

Figure 13. Officwin.pcx as seen as a wail in the Environment.

Wall.pcx would appear as a wall with a transparent window in the environment.
Anything on the other side of the wall would be visible through the window.

3.3.3.2 Door
Normally you may not walk through a wall, however, the "door" feature of a wall
provides the ability to pass through the wall piece. The .pcx filename must be followed by
the word door in the 3d.map file. To pass through the door, the spacebar must be pressed

12

when the operator is next to the door. Generally, this is used for closed doors so that
when the operator walks up to the door, they must stop and press the spacebar to get in,
which would simulate stopping to open the door.

Example:
bathroom.pcx door

3.3.3.3 Open Door
The "open door" feature allows for passage through a wall piece without pressing the
spacebar. Often, this feature is used with the "window" feature so the perception is a
door standing open that can be looked through and walked through.

Example:
bathroom.pcx opendoor window.

Examples as seen in a Paint Program;

Figure 14 Bathroom.pcx door Figure 15 Bathroom.pcx opendoor
window

In the environment, if standing in front of Figure 13, you could press the spacebar and be
placed on the other side of the door as if you had walked through the doorway. In the
environment, the black area in Figure 14 would appear transparent and you could walk
through the doorway.

3.3.4 fobil section
The [obj] section defines the .pcx files to be used as objects in the environment. Objects
are placed within rooms, and they do not hinder movement when navigating through an
environment. One coordinate block on the map is considered to be an 8 x 8 foot room,
and only one object can be placed 'within' a coordinate block. An object is actually flat,
considering that it is an image file like the walls. Therefore, it only has one view, so no
matter what angle it is viewed from, it will always appear the same. An example is that if

13

the image file of a person facing you is placed in a room as an object, the person will
always appear to be facing you regardless of the viewing angle.

In summary: 1) objects are placed within a coordinate block on the map whereas walls
define the perimeter of coordinate blocks, 2) the space surrounding the object in the
image file should be painted black in order to appear transparent in the environment, 3)
you can walk through objects, but not walls (unless designated as open doors). Note: If
the space surrounding the object is not painted black, the object will appear to be a wall
that you can walk through.

Figure 16. Table.pex as it appears in paint program.

Figure 17. Table.pcx as seen as an object in the environment.

14

3.3.5 Foverhead] section
This section gives information for displaying an 'overhead' picture in the environment.
An overhead picture is an image file which can have movable text pieces.

The text pieces are originally displayed as white text listed down the left side of the image
file. Each piece of text can be moved around within the image file using the drag and
drop feature of a mouse. The first entry in the [overhead] section is the file name of the
.pcx file to be displayed. All successive lines define the text pieces to be listed. In the
following example, a map (map.pcx) will be loaded as an overhead image file, and
Office, Cafeteria, Files, and Conference will be the movable text pieces.

[overhead]
map.pcx
Office
Cafeteria
Files
Conference

Press F1 then F1O when you have finished placing the names

Figure 18. Overhead Image of a map

In this case, the user would select the text pieces with the mouse and move them
to the desired location on the map. Another example of an overhead image would
be a schedule like the one shown below.

15

[overhead]
schedule.pcx
Annette
Susan

Figure 19. Schedule.pcx as an Overhead Image.

In this example, the two names in the top left comer, Annette and Susan are the moveable
text pieces, and they can be selected and moved to the appropriate cell.

There are two ways to call up an overhead picture: 1) calling it up in the waypoint
command file using the SHOWMAP command (Section 3.5.1.6), or 2) showing the
picture on demand with the key combination of Alt-m.

To exit the overhead picture, <FlO> must be pressed. If the picture is shown more than
once, the pieces will appear wherever they were left in the previous display; however, the
position is not saved in the data output file. Currently, the only known method to save the
final positions of the names, is to run a screen-capturing program simultaneously with 3D
World.

3.3.6 [belyl section
This section is a one-line entry that displays a customized help screen when the key
combination of Alt-h is pressed. The help screen is a .pcx image file no larger than 360
by 200 pixels. To exit the "help" screen, press any key.

[help]
help.pcx

16

3.4 World Development Executable Files
The World Development files are the World Editor and the Map Editor. These are the
executable files that are used to actually build the environment. The World Editor is the
primary interface between the user and environment, and the Map Editor is the drawing
tool used to construct the environment. You will be instructed how to use the editors in
Section 4.0.

3.4.1 Editor.exe
Executes the World Editor Menu System (Section 4.1).

3.4.2 Editmap.exe

Executes the Map Editor which is the drawing board and tools for building the
environment (Section 4.2).

3.4.3 Initmap.exe
Executes the Map Editor, but creates a blank drawing board (Section 4.2).

3.5 Loading and Running Files
The following are files that are needed to run the 3D World program. The waypoint
command file is the primary running file in that it is within the waypoint file (1.way) that
you can define a scenario or story for the environment, designate sound files, provide
instructions or define routes within the environment, etc.

3.5.1 The Waypoint Command File (1.way)
The waypoint command file is the central running file for 3D World. It is responsible for
loading the map, initializing sound, providing interactive information, controlling all
action in the environment by designating waypoints (positional goals), and defining data
collecting procedures.

A positional goal is a coordinate block (waypoint) within the map of the environment that
the operator 'triggers' once it is stepped on. For example, an operator may be asked to go
to a particular room in an environment and find a specific object. When the operator
walks up to the object, that waypoint may trigger, and he may get a text message on the
screen and/or a voice message confirming that he has found the object. A waypoint is
simply a place where instructions are provided, voice files are activated, overhead images
are displayed, or some other action may occur.

The waypoint file is created using any ASCI text editor. The 1.way file is created and/or
edited in the DOS editor by typing "edit 1.way" at the DOS prompt. It can also be created
and/or edited in Windows using Notepad or any other editor. Regardless of the editor
used, the file should always be saved as text with .way as the extension. You may have
multiple waypoint files in a directory, for example. 1.way, 2.way, 3.way, etc. 3D World

17

only recognizes 1.way, however, unless you initiate the executable with the w =
somenumber command when you start the program (See 3.2 for more information).

A waypoint file is partitioned into sections called functions. A function begins with a
header (usually waypoint coordinates) and lists a set of commands to be carried out when
that function is called. The first function in the waypoint file, however, is unique in that
it provides instructions to the run module for setting up the environment.

3.5.1.1 The Start Function
The headers for all functions are enclosed in square brackets. The first function always
has a "start" header rather than waypoint coordinates. Following the start header,
commands are given to set up the environment. Typically, the commands in the [start]
function include: 1) display a picture while the map is being loaded, 2) load the world
database .map file, 3) activate the sound, 4) activate the input device to be used and 5)
activate the first waypoint. Here is an example of the [start] function.

[start]
showpalpic logo.pcx
load 3d.map
usesoundeffects
usedigitizedvoice
backgroundsoundoff
usekeys
wait
activate (17,6,1)
play

The following is a list with explanations of the commands that can be used in the
[start] function.

* SHOWPALPIC
Displays a picture centered on the screen while the .map file is being loaded.
Typically, an introduction screen is displayed. The picture's palette is also being
loaded at this time. In general, the same palette should be used for all images. If
multiple palettes must be used, the palette can be reset by using the
SHOWPALPIC command.

* LOAD
Loads the 3d.map file. This command is essential to run 3D World. The 3d.map
file is the world database and calls up the images for the environment. Only one
LOAD should be performed per waypoint file and the LOAD command should
always precede a PLAY command. The file does not have to be called 3d.map,
but does have to have a .map extension.

18

* USESOUNDEFFECTS
Enables the playing of sound effects to signal running into walls and walking
through doors. If this option is turned on, ouch.voc and phaser8.voc must be
present in the current directory.

* USEDIGITIZEDVOICE
Enables the playing of digitized sound files with the SPEAK/SPEAKONLY
commands. This allows you to hear voice files of people talking.

* BACKGROUNDSOUNDON/ BACKGROUNDSOUNDOFF
BACKGROUNDSOUNDON turns on background sound. It causes test.mid to
be played continuously, until the program exits, or BACKGROUNDSOUNDOFF
is executed which simply turns off the background sound started by
BACKGROUNDSOUNDON. Successive calls to BACKGROUNDSOUNDON
will simply restart the background music.

Note*: To hear sound, the /sound command must be present when starting 3D
World (see Starting the Program, Section 3.1). These features have only been
successfully tested using true SoundBlaster cards.

- USEKEYS / USEZOOM
To navigate in an environment, the keyboard or the mouse can be used. The
default navigation device is the keyboard. These commands specify the
navigation device. None of the keyboard commands have associated parameters,
therefore each should be entered on a line by itself.

USEKEYS changes the 3D viewer's input to the standard keyboard input. For
slow machines like a 386DX/20, this mode is recommended since keystrokes will
not be "missed" if the computer samples at the wrong time. The keyboard buffer
is reduced down to one stroke, and additional keystrokes are ignored until the first
is processed. This navigation device is also recommended when the feeling of
"stepping" is desired.

USEZOOM is a faster implementation of USEKEYS. The "zoom" mode gives
more of an arcade game feel, but requires more processor speed. If the processor
is too slow and can't provide a reasonably high update rate, users may notice
quick keystrokes being missed by the computer. This mode allows multiple
keystrokes to be pressed for turns while walking, etc. The motion also tends to
seem more fluid, and thus the sensation of "stepping" is reduced.

19

* USEMOUSE / NOMOUSE
USEMOUSE enables the mouse as a navigation device. This command must be
used in conjunction with either USEKEYS or USEZOOM. The mouse is
generally not used as a navigation device because it is difficult to control.

NOMOUSE disables the mouse as a navigation device.

* WAIT
The WAIT command used at the end of the first function will keep the image file
that was loaded using the SHOWPALPIC command on the screen until the
operator presses a key. A message reading "Press a key to continue" will blink on
the bottom of the screen. Once a key is pressed, the environment will appear on
the screen at the starting point. If this command is not used, the image file will
only be on the screen long enough for the 3d.map file to be loaded, then will
disappear and the environment will appear at the starting point. This usually
happens vey quickly, so it is recommended to use the WAIT command in the start
function.

- ACTIVATE I DEACTIVATE
When in play mode, the 3D World viewer checks to see if an active waiypoint

block has been intersected (stepped on) each time a movement takes place. When
an active waypoint has been triggered, execution goes to the commands associated
with that coordinate block.

The first waypoint should be activated in the [start] function. ACTIVATE
activates a waypoint. The coordinates in (x,yl) format of the waypoint should
follow the word activate. The x and y are standard coordinates and the T
identifies the level of the waypoint. You may have multiple levels of a waypoint if
you want it to do different things at different times.

When the ACTIVATE command is called, a search is conducted within the entire
waypoint file to find the header containing that waypoint. Using the ACTIVATE
example shown in the [start] function above, a line beginning with "[(17,6,1)"
would be searched for. If found, the commands associated with that waypoint
would be executed.

DEACTIVATE simply deactivates a waypoint so it will not trigger if stepped on
again. This allows the operator to visit a location more then once, but only have an
action occur at the time that the waypoint is active. This command is essential
when using multiple level waypoints. If a waypoint is deactivated within it's own
function, DEACTIVATE MUST BE the last command before PLAY.

20

-PLAY/END
The final command in a function is either PLAY or END. Either of these
commands signals the end of the function. PLAY is the command used at the end
of all functions to return control to the operator. While in play mode, navigation
of the environment is possible until a waypoint is stepped on. At that time,
control is given to the function associated with that waypoint. END is used in the
last function to end the 3D viewing program.

3.5.1.2 Waypoint Functions
All functions following the "start" function act as positional goals called waypoints.
Each waypoint function contains a header which indicates the coordinates that activate
the waypoint. After the waypoint is activated, commands following the header are
executed. The waypoint is terminated when a PLAY or END command is encountered.

The header of every waypoint must be enclosed in brackets. The coordinates for a
waypoint are in the (x,y,l) format. The x and y are standard coordinates and the '1' is for
the level of the waypoint. Each waypoint can have different levels so that each time the
waypoint is crossed the program will display different information. The levels are
numbered consecutively beginning with one. An example header would appear like this:

[(17,6,1)] x = 17, y = 6, Level = 1

There are a variety of commands which can be executed in a waypoint function. Here is
an example of a function in a waypoint file.

[(17,6,1)]
record effort.mov
speak introl.voc
echo "Please raise your hand and
echo "wait for the experimenter
echo "before beginning.
showmap schedule.pcx
showpic blank.pcx
speakonly 16min.voc
nop
speak intro2.voc
echo "You've just arrived at the
echo "Browning, Browning & Smith
echo "law firm. Enter the office to
echo "find out what you will be
echo "doing today.
clock_on 500
activate (15,15,1)

21

deactivate (17,6,1)
play

There are many different commands that can be used in the waypoint file. They have
been categorized into four groups: 1) basic functions, 2) interactive commands, 3) data
collection commands, and 4) overhead image commands. The various commands are
defined below. The command interpreter is not case sensitive, however it is advised that
all commands be lower case. Each command must start on a new line to be interpreted
correctly, and each command must end with a hard return. Extra spaces are ignored.

3.5.1.3 Basic Commands

* ACTIVATE activates a waypoint. The 3d-world viewer checks to see if a
waypoint coordinate block has been activated each time a movement takes place.
When an activated waypoint is intersected, a search is conducted throughout the
entire waypoint file to find the function header containing that waypoint. When in
play mode, the execution goes to the first line following the header.

Example:
activate (17,6,1)
activates the function [(17,6,1)] shown above

* DEACTIVATE deactivates a waypoint. It is important to deactivate a waypoint
once it's been activated if you do not want it to trigger again. By deactivating a
waypoint, that point is removed from the list of waypoints to be checked against
as described in ACTIVATE. If a waypoint is reached, but not deactivated before
a PLAY command is executed, that waypoint will continue to trigger.

Example:
deactivate (17,6,1)

* END ends the 3D viewing program. The output file is closed, cleanup is
performed, and control is returned to the DOS prompt.

* NOP is short for No Operation. This is good for separating dialogue boxes
when you have long segments of text.

• PAUSE stops the program for a specified amount of time. This command
requires a parameter representing the number of seconds for the program to pause.
This command can be used in conjunction with the SHOWPIC command to
create a sense of animation.

Example:
pause I

22

* PLAY returns control to the viewing program. While in play mode, navigation
of the environment is possible until a waypoint is hit. At that time, control is
given to the waypoint function associated with that point. A PLAY command
will almost always be at the end of a waypoint function.

• POSITION teleports the operator to a specified location. The values given are
the X and Y coordinates and the facing angle. The point (0,0) corresponds to the
upper left-hand comer of the world. The X position moves positively to the right
and the Y position moves positively downward (the standard quadrant system uses
up as positive Y). The angle is measured in degrees where +X is 00, -Y is 900, -X
is 1800, and +Y is 2700. Five squares to the right, ten squares down from the
upper left-hand comer facing up would be (5,10,90).

90"

+X 180" 0"

+Y 270'

Example:
position (5,10,90)

Figure 20. (X,Y) Coordinate System and Angles.

This is a useful command when it is necessary to take the subject out of one
environment and put them in another, or position them on the other side of a door.

* POSITIONWAIT is identical in syntax to the POSITION command. The
difference is that 3D World waits for a key to be pressed before continuing.

Example:
positionwait (5,10,90)

* REM is a remark statement or comment. Any line beginning with this is for
internal documentation and is ignored by the run module. Additionally, blank
lines and invalid commands are treated as comments.

* WAIT pauses until a key is pressed. It also writes a blinking message of "Press
a key to continue" centered on the bottom of the screen.

23

* WAITFORENTER pauses until the <Enter> key is pressed. It also writes a
blinking message of "Press the <Enter> key to continue" centered on the bottom
of the screen.

* YO pauses until a key is pressed. The difference between this and the WAIT
and WAIFORENTER commands is that you can customize a message to appear
on the screen. The message can be up to 40 characters in length. The syntax is
the same as the ECHO command (described below).

Example:
yo "<user defined message>

* YOWAITFORENTER pauses until the <ENTER> key is pressed. The
difference between this and the WAITFORENTER command is that a typed
message is included that is to be displayed on the screen. The message can be up
to 40 characters in length. The syntax is the same as the ECHO command
(described below).

Example:
yowaitforenter "<user defined message>

3.5.1.4 Interactive Commands
* ECHO types a set of text into a text (dialogue) window.

Example:
echo "<message>
echo "<message>

All text in the line following the ECHO command will be displayed in a window.
If there is more than one line of text, simply continue to the next line beginning
with the ECHO command again. Only the text will appear in the window, not the
word 'echo.'

If more than one window is desired, the NOP command can be used between echo
commands. This is useful for dividing long segments of text up into different
boxes so operators aren't required to do as much scrolling. (See Using the
Dialogue Windows, Section 3.3, for further information).

* SPEAK plays a digitized voice file on a SoundBlaster card. The command must
be followed by an ECHO command to hear the sound.

Example:
speak tada.voc

24

echo "hello

This feature has only been successfully tested on true SoundBlaster cards.
SoundBlaster compatible cards that have been tested did not work.

The sound will only be played if the /sound command line option is used when
running 3D World. Additionally, USEDIGITIZEDVOICE must be called
before these sounds will play.

- SPEAKONLY plays a digitized voice file on a SoundBlaster card. This feature
differs from SPEAK in that an ECHO command does not have to follow in order
to hear the sound.

Example:
speakonly tada.voc

This feature has only been successfully tested on true SoundBlaster cards.
Soundblaster compatible cards that have been tested did not work.

The sound will only be played if the /sound command line option is used when
running 3D World. Additionally, USEDIGITIZEDVOICE must be called
before these sounds will play.

3.5.1.5 Data Collection Commands
- CLOCKON starts an on screen countdown counter. The start time is specified
in the command, and the clock counts down in seconds.

Example:
clock_on 500

• CLOCK_OFF stops the on screen countdown counter and erases it from the
screen.

Example:
clock..off

o INPUT displays an input box on the screen that accepts input from the screen
and saves it to the data file. The specified prompt to be displayed cannot' exceed
40 characters of text.

Example:
input "<specified prompt>

25

* PLAYBACK plays back a series of keystrokes which were previously recorded
as a .mov file.

Example:
playback move.mov

9 NOPLAYBACK ends the playing back of a series of recorded movements
before the set of movements have been completed.

• POINTTO Each occurrence of this command will read one line of the 'input
file', so* it is important that there are the same number of entries in the 'input file'
as there are 'pointto' commands. The input file consists of the following:

-Position (x,y,angle)
-Question that the subject sees (256 characters max.)
-Correct heading
-Correct distance

A yellow cross hair will appear in the middle of the screen when the subject is
asked to point to an object.

* RECORD records operator moves to a specified file having the extension
.mov.

Example:
record move.mov

In order to end the move recordings, a waypoint must be positioned at the desired
endpoint and contain NORECORD. The END command will also stop the
recording process. The recorded commands include all keys active during a
"PLAY" session - currently movement, overhead help, opening doors, and quitting
the program without the use of an END command. The record command does not
record <Enter>. The input for the moves is the same as in the USEKEYS mode.
The RECORD command is useful for recording operator movements for research
purposes. Playing back recorded movements can also be useful, for example, to
take tours of an environment without operator interaction.

• NORECORD stops recording moves and closes the movement file from the last
RECORD command.

a RECORDTIME records the current time on the down counter to the data file.
It will also include a specified comment if present.

Example:
record_time "<comment>

26

* SPIN allows for movement to spin in a circle. SPIN must be coupled with the
CLOCKON command because forward and backward movement is not allowed
until the clock is at zero. This command gives the sensation of looking around
without moving.

Example:
clock on 10
spin

* SWAT accepts input from the screen. This command is a more specific form of
input. SWAT stands for Subjective Workload Assessment Technique and is a
research tool used to study operator workload (ref%%%). It displays a prompt on
the screen asking the operator to enter Time, Effort and Stress SWAT ratings then
saves them to the data file.

Example:

swat

• TIME records the elapsed time from the 3D World internal timer.

" TIMEROFF disables the 3D World internal timer. This allows for the use of
3rd party software that may interfere with the timer in 3D World.

* TIMERON enables the 3D World internal timer.

* YOCOMPASS is used in conjunction with the command line argument
'/comm'. It is identical to the YO command in syntax, but after displaying the
message on the screen it sends a 'V' to COMM port 2 and then waits for a 'V'
from the external computer before continuing. WARNING: This command has
the ability to lock up the 3D World program if used in conjunction with the
'/comm ' argument and there is no external computer attached.

3.5.1.6 Overhead Image Commands
* SHOWMAP displays a picture of the overhead picture defined in the 3d.map
file. <F10> must be pressed to exit the SHOWMAP mode.

* SHOWPIC displays a .pcx file centered in the screen. For a better guarantee of
positive results, make the picture be a multiple of four in width (i.e. 64 or 68
pixels wide, not 65 pixels). The picture should not be any larger than 320 pixels

27

wide by 200 high. Generally, this should be 'followed by a WAIT or
WAITFORENTER command to allow the operator time to view the picture.

Example:
showpic miap.pcx

* SHOWPALPIC is the same as SHOWPIC, but also loads the picture's palette.
The previous palette is faded out, the picture is loaded, and the new palette is
faded back in. This is useful if a palette file does not exist for the current images
being used.

Example: showpalpic map.pcx

3.5.2 Ewavga.bgi

The graphics driver.

3.5.3 Map.3dm
The actual map of the environment created in the Map Editor

4.0 CREATING AN ENVIRONMENT

In this section, we will be discussing how to actually build the environment using the
World Editor and the Map Editor. The World Editor is not required to create an
environment. Its purpose is to simplify the development process especially when creating
the Icon files. If you choose not to use the editor, you must manually edit the Icon files as
described in Section 3.2.

4.1 Understanding and Using the World Editor

The World Editor is a development tool which simplifies the creation of an environment
by allowing the operator to select options from a menu. You are able to access the Map
editor, the DOS editor, a Paint Program, and DOS Shell from .within the editor. Perhaps
the most important feature of the editor is the ease in which it allows you to create the
icon description files (objectdata.def and mapdata.def). The World Editor is not required
to create an environment. You can create an environment without ever using the World
Editor, however, it can be very helpful in certain ways as we will explain. To access the
World Editor, you must have the editor.exe file in your 3d directory, then type 'editor'
and it will appear on the screen. You should be able to create a complete working

28

environment by using the selections from the World Editor menu. See Figure 20 for an
example of how the World Editor appears on the screen:

PaintPaint program
dos Shall

exit

Figure 21. Example of World Editor screen

4.1.1 Editor Menu Selections
Map Editor: Selecting this will display the Map Editor for editing the drawing board.

DOS Editor: This will put you in edit mode in DOS.

Paint Protham: This will bring up the Neopaint Paint progam for creating/editing pex
files.

DOS Shell: This puts you in MS DOS mode. You must exit to return to the editor.

4.1.2 Mapdata/Ob !data Menu Selections
Selecting these will allow you to create/edit the Mapdata.def aihd Objectdata.def files and
create icons for use in the Map editor. The icons represent the image (.pox) files that
comprise the environment. You will build the environment using these icons on the Map
Editor drawing board. Using the World Editor is much simpler than manually entering the
field values in the file as described in 3.2. To edit the Mapdata.def file (for example), you
would click on mapdata.def, then choose Edit from the menu bar. The following
illustration represents what you will see on the screen.

29

Editor Mapdata Obidta Help

---- -- -- '-----

Figure 22. Example of mapdata.def menu

Although the instructions on the box say to choose a file, you should only have one file
available. You should select mapdata.def using the RIGHT mouse button to open the
file. Figure 22 is an example of how the screen will look once the file is opened.

Editor rapdata ObJdata Help

Figure 23. Example of mapdata.def menu

30

When using the World Editor, the mapdata.def file is organized as described in 3.2.1.:
the first field is the item number, the second field is the map piece icon's image, and the
third field is the item description. The difference is that the actual icon appears. in the
second field instead of a field value. You would edit this file to add wall icons, change an
icon color, or change an icon's descriptive name. To edit this file, click on a line with the
right mouse button. Once you click on a line, that item's description will appear on the
screen as shown in Figure 22. You can edit the description by typing in the
corresponding block. If you are creating a new icon, the block will be blank, and you
should type in the name you choose. Once you have finished, press enter. The only
editing you will do is to the second and third fields of the file; icon image (as discussed
below) and item description. You will not edit the first field (item numbers) in the World
Editor. This is done automatically.

IMPORTANT: The icons in the mapdata.def and objectdata.def files will be used as
map pieces and represent the .pcx image files in the World Database (3d.map) file.
Therefore, they should be listed in the SAME order as the .pcx files in the 3d.map file. An
image description DOES NOT have to be identical to the .pcx filename since it is for
descriptive purposes only, but the .pcx filenames listed in 3d.map MUST be in the 3d
directory. Note: You can change the name of a .pcx file while editing the .def files by
pressing 'c'.

Next you will be selecting the foreground and background colors for the item's map icon.
The icon will represent the map piece that you will be placing on the drawing board so
you may want to try and relate the icon colors to the .pcx image. To choose the colors,
press either F for foreground or B for Background. See Figure 23.

31

Editor "andata Ob iudtz He 1P

Figure 24. Example of editing the foreground color for the map piece icon in the
mapdata.def file

Figure 23 shows how the screen will appear if you're editing the foreground. To choose a
foreground color, simply click on a color with the left mouse button. Repeat the process
for background color.

Editing the Objectdata.def file is identical to editing the Mapdata.def file, with the
exception of the shape of the icons. You are permitted to change the shape of an icon in
the objectdata.def file. Do this by pressing the 'x' key and choosing any of the patterns
on the menu.

IMPORTANT: When you have completed editing a .def file, you must press <Enter> to
save the file. ESC will NOT save the file.

4.1.3 INSERT and DELETE
At times, you will find it necessary to insert or delete an item from the .def files. As seen
in Figure 22, there are two selections, insert and delete, which you may use to do just that.
To insert an item, select the item in the file that you want directly below the inserted item.
Click on it with the left mouse button. A line will be inserted in the file which reads
"empty." Click on that file with the right mouse button and edit as usual. To delete an
item, click on it with the left mouse button.

IMPORTANT: When you add or delete a file from the mapdata.def or objdata.def files,
you MUST manually insert or delete the item in the 3d.map file in the same order as it
appears in the .def file.

32

4.2 Understanding the Map editor

The world editor provides a graphical interface called the Map Editor for use in editing
the 3D environment. It works similar to many of the standard commercial paint programs
on the market using selection lists and multiple drawing tools.

For an example of what the Map Editor looks like, see Figure 25.

[I. Drawing

Drawing bel
Board

, " - W alls

-Braun in double

z........ Dot

3 ., : 0000 - MPlain obj: Wood tableI I ~ ~rI __ o

(x,y) Wall Piece Object Piece

Figure 25. Map Editor

Drawing board: the bird's eye view drawing area representing the environment

Drawing Tools: Lists the tools available for drawing the environment

Objects: Lists the object image files and their icons as defined in the objectdata.def file

Walls: Lists the wall image files and their icons as defined in the mapdata.def file

33

(xy): displays the x,y position of the mouse cursor on the drawing board. Note that the
upper-left hand comer is (0,0) and both x and y increase toward the lower right corner

Wall Piece: Displays the name of the Wall map piece that the cursor is pointed to on the
drawing board. If pointed to an object or nothing at all, this will read 0000 - Plain.

Object Piece: Displays the name of the object map piece that the cursor is pointed to on
the drawing board. If pointed to a wall or nothing at all, it will say nothing.

4.2.1 Understanding the Ma, Editor Coordinate System

4.2.1.1 The (XY) Plane

* X increases as you move to the right (east); Y increase as you move down (South):

Note that this is a left-handed coordinate system. As a result, when doing math to
calculate coordinates, the Y value must often be negated since the standard math model
uses up as positive Y.

+Y

Figure 26. (XY) Plane.

4.2.1.2 Anrles

• +X is 0; angle increases counter-clockwise, in degrees:

This is conceptually the same as the mathematical model where the angles start from east
and increase as the angle goes in the direction of north. Note that when using the
/showcoords command line option and POSITION in the waypoint command file, this is
the system being used.

34

90+

180" O"

270"

Figure 27. Angles in the Map.

To find the position of a block, always start with the mouse in the upper left-hand comer
at (0,0). Move the mouse from this position to the desired position. If you do not start
from the upper left-hand comer, you may get an incorrect reading.

4.2.2 Building the Environment Using the May Editor

The Map editor, as described earlier, is basically a canvas where we draw, or build, an
environment. Selection boxes allow the user to easily choose from a large number of
drawing tools and images by using a mouse. The selection boxes are located to the right
of the drawing board and are categorized into three groups: drawing tools, objects and
walls. Below is an example of the Tools selection box.

Scroll Up

Scroll Down

K Selection Buttons

Figure 28. Map Editor Selection Box

The scrollers shift the list of items up or down so that all items can be viewed. You can
select an item by simply clicking on it.

35

4.2.2.1 Tools

Tools affect the way that objects and map pieces are drawn on the screen with the mouse.
They are provided to speed up the map drawing process.

The tool selection box is located on the top-right hand comer of the map editor's screen.
Tools can be selected by moving the arrow cursor over the item and clicking on the cell
of the desired tool.

The tools that are currently available are: dot, line, box, bar, and fill. The dot tool is used
to place one item on the map at a time. When clicking on the map using the dot tool, one
space is filled with either a wall or an object, depending on which type of piece is
selected. When dragging the dot tool, a scribbling effect can occur if the mouse is moved
too quickly. Drawing will continue as long as the mouse button is held down.

The line tool provides for simple line drawing. If the mouse button is clicked, this tool
acts like the dot tool, but isn't as precise. The standard use is to drag the mouse from the
starting position to the ending position of the line then release the mouse button.
The box tool creates a box. This is useful in initially creating rooms by setting up the
outside walls. The clicking and dragging functions work similar to the way the line does.
The bar tool creates a filled box. This tends to be most useful as a large area eraser. The
clicking and dragging functions work similar to the line and bar.

The fill tool is very common in professional paint packages. To fill an area, click on the
area that should be filled. The fill will not cross wall boundaries. When filling in map
pieces, all pieces connected to and of the same type as the original are changed to the
currently selected map piece. If you begin a long fill and change your mind, you can
terminate the fill by pressing the space bar or most any other key. Sometimes the fill tool
will not fill an entire area due to memory constraints. This usually occurs only when
filling areas of more than about half of the world. If this happens, simply follow up with
additional fills or with the dot or bar tool.

4.2.2.2 Wall Pieces

The third selection box from the top is the Walls selection box. It contains a list of all of
the wall pieces that can be used in designing a world. To create rooms or add walls to the
map, select the type of tool you want to use from the Tools selection box. Then go to the
Walls selection box, and click on the wall piece you want to place in the environment.
You should then move the cursor over the map where you would like to place the wall,
then press the left mouse button. You will see a map piece appear on the map.

There are two ways to erase a map piece. The first is to select an "Empty" item from the
Walls or Objects selection boxes depending on what you want to erase. If you have many
wall pieces, it may be. toward the end of the list. To avoid scrolling endlessly down,

36

scroll up. The selection boxes allow scrolling in both directions and wrap around when
the end or beginning of the list is found. Select and place the "Empty" piece on the map.
Doing this will replace, and therefore erase the previous walls.

The second, and far more convenient, way to erase walls is with the right mouse button.
Clicking on an item with the right mouse button performs the same as using the "Empty"
piece with the left button. The advantage is that you don't have to move your mouse over
to the selection bar, scroll up, then go back to where you were, instead, you just erase.

4.2.2.3 Obeets

Like the walls, objects have their own selection box. Object pieces function almost
identically to the map pieces. Just select an object and begin drawing with it, or use the
right button to erase. The main difference between the two when creating the
environment is that the walls are placed on the perimeter of a coordinate block, and are
thus arranged as horizontal and vertical pieces only. Objects, on the other hand, are
always placed in the center of a block. Therefore, using an object at a particular set of
coordinates does not preclude the use of north-south and/or east-west wall(s) there. Just
remember, only one object may occupy one block, and only one map piece may occupy
one side of a block.

Just before the "Empty" object in the selection list, there are 8 arrows. By placing one of
these on the map, the starting position of the operator is defined. The arrow specifies the
direction the player will be facing when the 3D World viewer loads this world. If more
than one of these arrows exist in the world, the one closest to the southeast comer is used.
However, it is advised that only one be used to ensure future compatibility.

5.0 VIEWING THE ENVIRONMENT

5.1 Starting the Program

5.1.1 Hardware Requirements
3D World is written in Borland 'C' 3.1 and will run adequately on any IBM PC with at
least an Intel 386 processor (or equivalent) with 8 megabytes installed RAM. 3D World is
also capable of playing '.mid' and '.voc' files through an authentic Sound Blaster Pro
sound card.

5.1.2 Configurin2 the Computer
3D World uses expanded memory, and the config.sys file must be configured to allow
this. In the device line which contains emm386.exe, RAM and h=255 must be added. If
the statement NOEMS occurs in this line, it must be removed.

37.

Example:
Device=c:\dos\emm386.exe RAM h=255

5.2 Running 3D World
To begin the program with the default parameter files, simply type 3d<ENTER> at the
command prompt. There are several parameters that can be changed when starting 3D
World, and the following is a list of the additional available command line options. To
use these when running 3D World, type:

3d /<command>

I/comm
This tells 3D World that there is a computer hooked up to COMM port 2 and that
whenever a 'yocompass' command is encountered in the waypoint file, the 3D
World program will send a 'V' to the computer hooked to COMM port 2 and then
will wait until the external computer sends a 'V'. WARNING: This command
has the ability to lock up the 3D World program if used in conjunction with the
'YOCOMPASS' argument and there is no external computer attached.

" /data
This tells 3D World that subject data is to be collected. The information that is
required is the subject's initials and a ten digit identification number. An output
file is created based on the information given here. If that file already exists, a
prompt will be displayed asking if the file should be overwritten. If the answer is
yes, the old file will be deleted and all of its information will be lost.

S/lowres
Using this option causes 3D World to run in a low-resolution mode. This results
in significantly better performance on low-end machines. However, this mode is
not recommended for machines capable of running at a normally acceptable frame
rate because 3D World run in low resolution has severely degraded image quality.

" Ip=SomeNumber
This tells 3D World what size to make the wall and object textures after they are
loaded. The default size is 128 by 128 pixels. SomeNumber represents this size
in pixels. The images must be square, have sides that are a multiple of two in
length, and must be less than or equal to 128. So, 2, 4, 8, 16, 32, 64, and 128 are
the only valid values. The only reason to use a value other than 128 would be to
save EMS memory.

" /showcoords
This has been made for debugging purposes. It displays the operator's position
and facing angle while running 3D World. This can be useful for detecting
misplaced waypoints.

38

* /sound
By including this option, SoundBlaster support is enabled, therefore, this option
requires a SoundBlaster Pro with the following drivers: SBFMDRV, SBMIDI,
and SBSIM. If this option is used when a compatible card is not present, 3D
World will generally exit with an error message. However, it may lock up the
system-with some cards, requiring a reboot.

* Iw=SomeNumber
The default waypoint command file is 1.way. This command accesses other
waypoint command files. SomeNumber matches the number used in the alternate
waypoint file name.

5.3 Navigating in the Environment
Movement in the program is controlled by the number pad and/or the cursor keys. Figure
27 describes the function of the number pad keys:

.hnk .. .~ .S i~~

cO 4 T,.m 5 OP,, .6r '

Left lBackwazM R..Left

ADZ': MAIM ... :,

Figure 29. Navigation Keys

There are other keys and key combinations that are active during navigation as well.
SPACEBAR
The space bar is used to open a door. In the simulated environment, the operator must be
facing the door (within 45 degrees, non-inclusive) and be closer than 4 feet away.

USEKEYS/SHIFT
In the USEKEYS mode, holding down <SHIFT> while walking causes the operator to
move twice the normal speed.

39

ALT-H
Displays the HELP Screen

ALT-M
Displays the Overhead Pictue

ALT-Q
Quits the program and closes the output file.
While navigating through the environment, waypoints will be activated. Navigation
control will shift to the waypoint commands then return to the navigation keys when all
commands in the waypoint have been executed.

5.4 Using Dialogue Windows

Dialogue windows are used to present the operator with textual information. A dialogue
window simply displays text on the screen and can be scrolled up and down with the
arrow keys. When the operator has completed reading the text in the window, he or she
can close it by pressing <ENTER>.

A Dialogue Window is created whenever the ECHO command is used (see Section
3.5.1.4). There is no limit to the amount of text you can put into a dialogue window, but
if you have a lot of text, it is suggested that you divide it up into several windows. You
would do this by using the NOP command between echo commands in the waypoint file.

Example:

echo "Today is your first day as an Office Assistant in the Psychology Department. You
echo "will be running errands, making copies, purchasing materials from the bookstore,
echo "and performing other miscellaneous tasks.
NOP
echo "You should see your supervisor to get a list of the tasks you are to perform.

In the above example, two dialogue windows will be displayed. The first one will contain
all the text that follows the ECHO commands in the first three lines. The operator will
then close that dialogue window and then the next window will appear on the screen. This
screen will contain all the text following the next ECHO command. Figure 28 is an
example of a dialogue box as it appears on the screen.

40

t b plcdapoiaeu1

Figure 30. Example of Dialogue Window

6.0 DATA COLLECTION I OUTPUT FILES

6'1 .out file

3D World provides for automated data collection. Type 3d/data to start the 3D program.
When 3D World begins, it will ask for the first and last initials, and identification number
of the operator. This information is used to construct the name of the .OUT file as well as
to give a short header for each line in the file. The following is the construction of the

filename:

first and last initials + identification number + .out

Example:
ss0956 .out

The .out file will be saved in the same directory as the program.

Each line in the .out file will start with the first and last initials and identification number.

The next part of the .out file will be a description of what waypoint command was used.
The final part will be the input. The line is divided by colons, so it is easy to import the
file into a spreadsheet. The following is what each command will give as an output:

41

Comn Fis .n ID Mesg ye oS yeo

Las Intil Nube

input Initials: ID#: Message Input from
given to operator
operator:

record time Initials: ID#: Message Time from
specified in counter
command:

swat Initials: ID#: SWAT: Input from
operator

time Initials: ID#: Elapsed time: Time
copier* Initials: ID#: Copier: Number
fileon* Initials: ID#: File: Name
phone* Initials: ID#: Phone: Correct or

Incorrect
menu* Initials: ID#: Menu: Quantity: Food

(default-1) Item
*The copier, file..on, phone, and menu commands are described in Appendix A.

If none of these commands appear in a waypoint file, or if they were not activated, the
.out file will be blank.

6.2 .mov file

All files ending in .mov are generated by commands in the waypoint command file. They
define a series of moves and consist of a recording of the character codes written to the
keyboard buffer. The recorded commands include all keys active during a "PLAY"
session. In order to create a .mov file, you will need to run the program with the
RECORD and NORECORD commands in the waypoint file. 3D World will record all
movements between those two commands, beginning immediately following RECORD
and ending with NORECORD. You would then remove those commands from the
waypoint file, and insert the PLAYBACK command to play back the recorded
movements. See Data Collection Commands under the Waypoint Running File, Section
2.1.3 for more information on these commands.

42

7.0 QUICK-STEP GUIDE TO CREATE A VIRTUAL ENVIRONMENT

Here are six easy steps to begin building an environment in 3D World. It is assumed that
wall and object .pcx files have already been created or taken from a library. All files must
be in the same directory to run the program. The 1.way file and the 3d.map file must be
created before the program can run.

Stev 1: Create the World Database (3d.map) file.
StEp 2: Edit the mapdata.def and objdata.def files.
Step 3: Draw the environment.
Step 4: Create a waypoint (1.way) file
Step 5: Test the environment.
Step 6: Finish the waypoint file.

Files that are necessary to begin building an environment:

1 .way i3d.exe
3d.map :-ditor.exe
mapdata.def initmap.exe

tools.def egavga.bgi

step 1:
The .map file must be created to set the parameters for the environment and to list the
.pcx files that are to be used as walls and objects.

" Wall pieces should be listed under the [pic] heading.
" Object pieces should be listed under the [obj] heading.

The following is an example including how to add an open door, a wall, a closed door,
and a table.

[map]
map.3dm

[parameters]
eyelevel 5.0
stepheight .50
speed 31
stepdist 3
turnrate 100

43

[pic]
thrudoor.pcx opendoor window
wall.pcx
bluedoor.pcx door

[obj]
blutable.pcx

[overhead]

[help]
help.pcx

SIMD 2:
There are two different methods of editing the mapdata.def and objdata.def files. It can
be done manually or the editor can be used. The editor is the easier method; however,
there are times when you may want to edit the files manually.

To use the editor:

" Type editor at the prompt.
" Left mouse click on the MAPDATA pull-down menu.
" Left mouse click on EDIT.
" Right mouse click on MAPDATA.DEF.
" Press <Enter> or right mouse click to change the description. Although it is referring to
that specific file, the description does not have to be identical to the filename of the .pcx
file.
" Press <Enter>.
" To change the color of the foreground, press <f>.
" To change the color of the background, press . It is necessary to give each piece it's
own color combination so the pieces can be differentiated when building the
environment. Note: Changing the foreground and background colors do not affect the
colors of the actual picture.
9 Enter a description for each of the pictures found in the [pie] section of the .map file.
Remember to keep them in the same order.
" When all pieces have been described, press q to save the file.
" Repeat this ptocedure for the objects, starting with the OBJDATA pull-down menu.
" To exit the editor, click on EDITOR.
" Click on exit.

44

Step 3:
Create a new map using initmap.exe. When this command is used, map.3dm will be
created to give a new blank map.

e Type initmap at the prompt.

After map.3dm is created, it should be edited to place the walls and objects into the new
environment. To edit the map, use editmap.exe.

" Type editmap at the prompt.
" Place walls and objects in the environment.
" Place a starting arrow in the environment.
" To quit from editmap.exe, type q, then y to save.

Steip 4.
A rudimentary way point file must be created. This file will be modified and expanded
later in development of the environment. For the purposes of beginning to build an
environment the 1.way file must load the .map file. An example of this is as follows:

[start]
showpalpic keyboard.pcx
load 3d.map
play

The SI-OWPALPIC command loads the picture to be displayed while the 3d.map file is
being loaded. Note:* You can change the name of the 3d.map file so you can have
multiple files in one directory. Simply load the one you want to use.

Test the environment.

* Type 3d at the DOS prompt.
* To open doors, press the space bar.
" To exit from the environment, press Alt-q.

Finish the waypoint command file.

45

8.0 TROUBLESHOOTING

e Memory is sometimes lost while running 3D World. Here is an example of an error
message that may appear when 3D World is exited:

HEAP CORRUPT in DoneMapLocs!

With luck, the computer will run 3D World again, however, normally the system must be
rebooted to recover the memory.

* If the palettes do not match on all of the pictures, the picture with the different palette
may change the appearance of colors on the other pictures. Therefore, make sure that
every picture uses the same palette.

* The .way, .map, and .def files can be edited from within Windows (using Notepad or
another editor) or they can be edited in DOS by typing edit at the prompt. Editor.exe,
editmap.exe, and 3d.exe must be run from the DOS prompt. 3d.exe usually does not
work if Windows has already been started.

* Voice files should be saved in SoundBlaster format (11 mhz, Mono, 8-bit) as a .voc file.

* Make sure any given room has walls completely encircling it. Otherwise, you will be
able to walk outside of the environment and the computer will probably lock up.

* If the editor is started from the MS-DOS prompt in Windows, the mouse may not be
active. Exiting Windows and starting editor should solve this problem, however, the
whole system may need to be rebooted to DOS.

* The editor will allow you to run other programs. However, it has been found that
sometimes the other programs do not run correctly from editor. If this is happening, it is
best to exit completely from editor and start the new program from the DOS prompt.

* There are times when the editor leaves blocks of color on the screen. This will occur
when a foreground or background color is chosen. These can be ignored, they will not
harm anything in the environment.

46

9.0 REFERENCES

Colle, H. A., & Reid, G. B. (1998). The Room Effect: Metric Spatial Knowledge of
Local and Separated Regions. Presence, 7(2), 116-128.

Colle, H. A., & Reid, G. B. (1999). The Room Effect: Exploring Paths and Rooms with
Objects Grouped Categorically and Spatially. Submitted to Ecological Psychology.

Endsley, M. R. (1993). A Survey of Situation Awareness Requirements in Air-to-Air
Combat Fighters. The International Journal of Aviation Psychology, 3(2), 157-168.

Nygren, T. E., Schnipke, S. K., & Reid, G. B. (1998). The Effects of Workload on
Groups formed by Subjective Ratings of the Subjective Workload Assessment
Technique. Proceedings of the 42nd Annual Meeting of Human Factors and
Ergonomics Society, 816-820.

Mailing Address:

Annette McCoy
Sytronics, Inc.
WPAFB, Area B, Bldg 197
Dayton, OH 45433
Annette.McCoy@wpafb.af.mil
937-255-5111

47

APPENDIX A. - ADDITIONAL WAYPOINT COMMANDS

Included in 3D World, there are additional waypoint commands that were used for a
specific experiment. Each of these is designed to work with a particular .pcx file and for
a specific purpose. If additional waypoint commands are desired, they must be
programmed in the source code.

* COPIER accepts input from the screen via the mouse. The command works in
conjunction with the copier.pcx file. The command format is: copier "<pcx file name>.
See Figure 29.

Example:
copier "copier.pcx

Enter t e u'nabe b pres iglhebuttons.
To clearl the stlectionpress <C1ear:.

When readyto c y.Press <Start%'

Figure 31. Copier.pcx

When a number is clicked with the mouse it appears in the copier window. When
'Clear' is clicked, the numbers are cleared. When 'Start' is clicked, the input is saved in
the data file and the next command in the waypoint file is executed. To replicate this .pcx
file with this function, the .pcx file must be 320x200 pixels large. The top left and
bottom right corners for each of the buttons should be placed in the following
configuration (in pixels):

48

I. * I SI

* 1 (9,84) (34,99)
2 (48,84) (73,99)
3 (87,84) (1.12,99)
4 (126,84) (151,99)
5 (165,84) (190,99)
6 (9,110) (34,126)
7 (48,110) (73,126)
8 (87,110) (112,126)
9 (126,110) (151,126)
0 (165,110) (190,126)

Clear (225,84) (255,99)
Start (271,84) (310,126)

Figure 32. Copier.pcx Replicate Configuration

* FILEON accepts input from the screen via the mouse. This command waits until the
operator presses a specified key or they leave the current waypoint. If the correct key is
pressed, an operator specified .pcx file is displayed, and the subject uses the mouse to
make the selection. The command format is: fileon <user specified key>, <.pcx file to
display>, <namel>, <name2>, <name3>, <name4>, <name5>, <name6>, <name7>,
<nameS>, <name9>.

Example:
fileon r, rJile.pcx, Karen Randall, Rowan Regal, Denny Renner, Jeff Richards, Tracy
Rogers, Darrell Rolex, Sean Row, Thomas Russo, Daniel Rutski

, , J.lD~ Rutsi \
. ../ Thomas Ru~sso

/G. Darrellolex\

!'5. Trac Rogers

1 .Karen Radal \

Figure 33. Rfile.pcx

49

When a name is clicked, the output that is specified in the waypoint command appears in
the bottom left hand comer. The 'Clear' button clears the name. The 'Accept' button
saves the input in the data file and the next command in the waypoint file is executed. To
replicate this .pcx file with this function, the .pcx file must be 320x200 pixels large. The
top left and bottom right corners for each'of the buttons should be placed in the following
configuration (in pixels):

4 (11,91) (85,105)
5 (123,73) (197,88)
6 (235,56) (309,70)

7 (11,37) (85,51)
8 (123,19) (197,33)
9 (235,1) (309,15)

Clear (252,171) (303,192)
Accept (193,171) (244,192)

Figure 34. R.file.pcx Replicate Configuration

PHONE accepts input from the screen via the mouse. The command works in
conjunction with the phone.pcx file. The command format is: phone "pcx file, <phone
number 1>, <phone number 2>, <phone number 3>, <phone number 4>, <voice file for
phone number 1>, <voice file for phone number 2>, <voice file for phone number 3>,
<voice file for phone number 4>, <voice file for wrong number>. If one of the correct
phone number is dialed, the corresponding .voc file will be heard. If a wrong number is
dialed, the wrong number .voc file will be heard. When either all four correct numbers
are dialed or the wrong number is dialed twice, the command is terminated and the next
command is executed in the waypoint file.

Example:
phone "phone.pcx, 2911234, 2914567, 2917890, 2918765, messagel.voc, message2.voc,
message3.voc, message4.voc, wrong.voc

50

Dial the =ber bypessing the buttons.
Ptess eCLR>,if you wantto change
themxmber you dialed.
Pcess<ND>,toendtheTumber
and receive amessage.

Figure 35. Phone.pcx

When a number is clicked, it appears in the bottom left hand comer. When the 'CIr' is
clicked, the numbers are cleared. When 'Snd' is clicked, the input is saved in the data file
and the number is cleared. The next command in the waypoint file will be executed when
either all four correct numbers are dialed or two wrong numbers are dialed. To replicate
this .pcx file with this function, the .pcx file must be 320x200 pixels large. The top left
and bottom right comers for each of the buttons should be placed in the following
configuration (in pixels):

1 (181,35) (204,59)
2 (209,35) (233,59)
3 (238,35) (262,59)
4 (181,69) (204,93)
5 (209,69) (233,93)
6 (238,69) (262,93)
7 (181,103) (204,128)
8 (209,103) (233,128)
9 (238,103) (262,128)
0 (209,139) (233,163)

Clr (267,69) (291,93)
Snd (267,139) (291,163)

Figure 36. Phone.pcx Replicate Configuration

* MENU accepts input from the screen via the mouse. The command works in
conjunction with the menu.pcx file. The command format is: menu "<pcx file name>.

51

Example:
menu "menu.pcx

-EN.

Figure 37. Menu.pcx

When a number is clicked on, the output appears next to the word 'Quantity'. When a

food item is clicked on, the output appears in the bottom left hand corner. These
particular food items are programmed in the source code. The 'Clear' button clears the
order. The 'Accept' button saves the output of the quantity and food item in the data file.
The 'Order Done' button exits this command, and the pext command in the waypoint file
is executed. To replicate this .pcx file with this function, the .px file must be 320x200
pixels large. The top left and bottom right comers for each of the buttons should be

placed in the following configuration (in pixels):

9 (259,149) (15164)
Acep (113,176) (162,164)

Cla (12,176) (222,198)

Ordepon (213,176) (16,198)

Figure 38. Menu.pcx Replicate Configuration

52

1 (5,107) (633,1)
8 (5,120) (37,30)
9 (5,132) (58,142)
10 (5,16) (63,176)
11 (53,8) (208,98)
12 (,37) (123,102)
13 (17) (203,657)
14 (1706) (300177)
15 (1328) (50,1)
16 (17,9) (182,103)
17 (234,26) (2708,38)
18 (234,40) (29,50)
19 (234,53) (274,63)

20 (234,6) (274,35)

Figure 39. Menu..pcx Replicate Configuration (continued)

53

THIS PAGE INTENTIONALLY LEFT BLANK

The DTIC Review Defense Technical Information Center

DOCUMENT 4

Force/Tactile Feedback System for Virtual
Reality Environments

AD-A342328

April 1998

Computer Graphics Systems Development Corp.
Mountain View, CA

5

THIS PAGE INTENTIONALLY LEFT BLANK

Final Report

FORCETACTILE FEEDBACK SYSTEM FOR

VIRTUAL REALITY ENVIRONMENTS

MiBMMtMON STATEWMN AIApproved for public roleanes
Diatributlon Unlinitd

April 3, 1998

C 0 R P 0 R A T I 0 N

Computer Graphics
Systems Development

19980421 158 Corporation
tel: 650-903-4920
fax: $50-967-5252

2483 Old Middlefield Way #140
TIOALL'. ,£ Mountain View, CA 94043-2330

415-903-4920 Fax: 415-967-5252
http://www.cgsd.com

APR-15-1998 14:35 DTIC-B FtBe vuir VA 783 767 8228 P.02/
REPORT DOCUMENTATION PAGE . OU -No, 0704-01.o8

pOtah: Fewrti g tonafor tis eI lelon of Ined ormaclk o is Omem d S O 119ef t forMOpr .e i rtll tor r il n g d Sorc sii rml nm theenta i~l mmld ~ V*""9 the, cnolIle cti on 0i Iintalm S wA'9aiIANftf 7'adlngthilb urden n n r-

D"lS "hway, Suite 12114, Allirgton, Vo, 222t2,A32,0id XoTh-Ooffice n d Budget, PolueriP rk RedUel,IO P'/OJ@ Tt l=lm~lnn~n 2050S-~u

T|TIE/ 1 'SU. rlLE ' 5. FUNOIN6' NUMBERS....
:orce/T ac'leFeedback Systems for SBIR

Virtual Environments Contract No.
M67004-95-C-0013

Computer Graphics Systems Development Corporation
(CGSD Corp.)
27. PERFORMING ORGANIZATION NiAME(S) AND ADDRESSCES) S. PERFORMING ORGANIZATION

REPORT NUMBER

Computer Graphics Systems Development Corporation
2483 Old Middlefield Way, Suite 140
Mountain View, CA 94043-2330

6. SPONSORING /MONITORING AGENCY NAME'() AND ADDRESS(!S) Ri EOR T /MONrMrRUS Army AGENCY REPORT NUMBER

STRICOM

12350 Research Parkway
Orlando, FL 32826-3276
1, SUPPLEMENTARY NOTES

TOPITTM User's Guide

T2R. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

nonclassified unlimited distribution

IbPM xOUCh oj~ecs Positioned In Time, is a vitural reality system that allows a
user, wearing a head mounted display (HMD) to actuate control knobs or dials on a
cockpit instrument panel appearing in user's HMD. The actual control kiobs/dials
are delivered to the user by an x-y-z robot. The instrument panel can be reconfigured
entirely in software. A tracker and data glove continually provide the position of
user's hand and finger to a computer, and the computer commands the
servomechanism system to place the correct type of control in the correct position to
be actuated. The servo system has a "touch panel" that contains examples of a dozen
or so different types of controls, such as toggle switches, knobs,. and push buttons,
that are used repeatedly to represent any number of instrument panel controls. One
key aspect of the system is building a servo system that moves fast enough to put the
knobs/dials in place at the time when the user reaches for it. Another key aspect is
achieving precise low-latency tracking of both user's head and user's hand.

14. SUWEcT TERMS . . , UMBER PAGES

virtual reality, helmet mounted display, robotics, tracker, data glove,-i;.MICD
cockpit instrument panel, servomechanism, servo 1$. PCE CO

".1 41INI MSSIFICATION ,LffWN=lASSIfICATION 19. S UMNSMMOCTIOW 20. IINIM O"ETRACT
Of REPORT Of THIS PAGE OF ABSTRACTun
unclassified unclassified unclassified unlimited

NSN 7S40.1-201.S500 Standard Form 296 (Rev. 249)
1101

C 0 R P 0 R A T I 0 N

Computer Graphics
Systems Development

Corporation

2483 Old Middlefield Way #140
Mountain View, CA 94043-2330

415-903-4920

fax 415-967-5252

Prepared for:

U.S. Army Simulation, Training, and Instrumentation Command
Contract No. M67004-95-C-0013
SBIR A93-316 11 - Force/Tactile Feedback System for Virtual Reality Environments

Prepared by:

Computer Graphics Systems Development Corporation (CGSD Corp.)
2483 Old Middlefield Way, Suite 140
Mountain View, CA 94043
Tel: 650-903-4920 Fax: 650-967-5252
http://www.cgsd.com

i = QuALrTY 1Y fl7EGTED a

Table of Contents

1. Introduction 1

2. Sum m ary of Technical Objectives and A pproach .. 9

3. System Concept .. 11
3.1 System Configuration ... 12
3.2 Tracker .. 13
3.3 Robotic M echanism .. 14
3.4 Visual Sim ulation .. 17
3.5 System Integration .. 19
3.6 Future VR System s/Phase III A pplications .. 19

4. Phase II Results .. 21
4.1 Positioning System .. 21

4.1.1 Desktop prototype hardware development and testing 22
4.1.2 M anipulator design ... 26
4.1.3 Payload design ... 31
4.1.4 Control software developm ent ... 32

4.2 Tracking System .. 34
4.2.1 Hybrid tracker developm ent ... 34
4.2.2 Optical Tracker Developm ent 37

4.3 H and M otion Prediction Algorithm s ... 39
4.4 Com putation Control Lags .. 41
4.5 Safety System s .. 42

5. Conclusions ... 44

List of Figures

Figure 1-1 TOPIT concept. Physical switches and knobs are positioned in a virtual
environment under software control to provide flexible force and tactile feedback.2

Figure 1-2 TOPIT Prototype ... 3
Figure 1-3.1 User station showing joystick, throttle, instrumented glove, and

helmet-mounted display ... 4
Figure 1-3.2 Joystick and instrumented glove .. 4
Figure 1-3.3 M ultisensor ... 5
Figure 1-3.4 Throttle and emergency stop button ... 5
Figure 1-3.5 Magnetic tracker transmitter .. 6
Figure 1-3.6 Y-axis servo motor .. 6
Figure 1-3.7 Servo electronics cabinet ... 7
Figure 1-3.8 Touchpanel .. 8
Figure 3.1-1 Three major subsystems ... 12
Figure 3.1-2 TOPIT tracking computer, magnetic tracker electronics (right) and HMD

electronics (on top of computer) .. 13
Figure 3.3-1 TOPIT system showing operator's station, X-Y manipulator, and touchboard..... 15
Figure 3.3-2 The final design uses cables to position the switch payload in x and y axes 16
Figure 3.3-3 The payload includes switches and knobs which are rotated to the needed

orientation .. , 17
Figure 3.4-1 Generated imagery includes the user's hand ... 18
Figure 4.1-1 Desktop prototype with cam followers used for wheels and aluminum channel

used for the track ... 22
Figure 4.1-2 The desktop prototype drive mechanism ... 23
Figure 4.1-3 Desktop prototype with scrap metal load ... 23
Figure 4.1-4 Portion of the payload and wheeled slider assembly - rubber "tires" on the wheels

grip a flange to provide quiet operation ... 26
Figure 4.1-5 How a stationary motor drives the y-axis independent of x-axis motion 27
Figure 4.1-6 Control station with throttle and joystick; HMD rests on seat 27
Figure 4.1-7 Control station includes throttle and joystick; HMD rests on seat 28
Figure 4.1-8 Lower right side of manipulator frame showing x-axis drive components 29
Figure 4.1-9 Lower left side of manipulator frame showing y-axis drive components 29
Figure 4.1-10 Manipulator frame showing Kevlar cord, tensioning turnbuckle, and pulleys... 30
Figure 4.1-11 X-traveler, y-traveler, and payload ... 30
Figure 4.1-12 Direct drive switch rotation with programmable detente positions 31
Figure 4.1-13 Portion of the electronics and the encoder used for initial "string tracking" tests -

the string loop extends to the prototype fixture and slider motion tracks the
string position .. 33

Figure 4.2-1 The Tracker Evaluation Unit contains more sensors than were ultimately selected.36
Figure 4.2-2 Hybrid tracker 2 sensor module with magnetic tracker attached 37
Figure 4.3-1 Manipulator Control Zones .. 40
Figure 4.5-1 Typical limit and emergency limit switches ... 43

ii

List of Tables

Table 4.1-1 Payload design calculations... 32

1. Introduction

The top-level objective of this SBIR Phase II project was to build a prototype virtual cockpit that
included force and tactile feedback. We achieved this top-level objective and all key technical
objectives discussed in section 2 as well. We discuss more of each of the technical objectives
and our approach in detail later in the report when we present our system concept in Section 3,
and Phase II results in Section 4.

System overview and project accomplishment

The user wears a head mounted display that presents stereo imagery of a cockpit interior,
including the instrument panel, as well as the out-the-window scenery. A representation of the
user's hand is also rendered in the scene. The user may actuate a variety of controls on the
instrument panel, and can accurately feel the forces and surface textures of the controls. The
simulator can be reconfigured entirely in software to represent different cockpits. The feel of
the instrument panel controls is provided by a servomechanism device that places actual
physical controls in their correct positions, orientations, and configurations. A tracker and data
glove continually provide the position of the user's hand and fingers to a computer. The
computer senses the position as the person reaches for a control. Using the extrapolated data,
the computer commands the servomechanism system to place the correct type of control in the
correct position to be actuated. The servo system has a "touch panel" that contains examples of
a dozen or so different types of controls, such as toggle switches, knobs, and push buttons, that
are used repeatedly to represent any number of instrument panel controls.

The system is called a TOPITTM - Touched Objects Positioned In Time. One key aspect of
the system is building a servo system that moves fast enough to always have the control in
place before the user's hand reaches it. Another key aspect is achieving precise low-latency
tracking of both the user's head and the user's hand. The tracking must be accomplished in the
presence of the moving metal elements and the electric motors of the servo system; a hybrid
magnetic/inertial tracker was developed to meet these requirements. The system has three
computers: an SGI Onyx/RealityEngine2 that does the imagery, a Pentium-based PC that does
the tracking, and a VME-based servo control system.

The TOPIT Force/Tactile Feedback System concept drawing [Figure 1-1] shows the proof-
of-concept demonstrator being used to simulate an aircraft cockpit. The central issue of the
feasibility of the scheme is establishing and meeting the timing requirements for determining
the touched-object and moving it into place in time.

However, while basic feasibility was established in Phase I, construction of a demonstrator
during the Phase II effort required the careful design and integration of mechanical, electro-
mechanical, and computer controlled devices to meet project objectives.

Overall, the major technical challenges were met. In particular, robotic hardware was built
to position the controls with the speed and accuracy required, and a sophisticated tracker and
an alternative tracker were built to provide the accuracies required for position and
extrapolation. The most difficult aspect of the program turned out to be getting all of the bugs
out of the complex system under severe budget constraints. In this last respect we were largely
successful, but not entirely. The main limitations of the final prototype lie in the fine points of

getting the software to run completely smoothly and reliability. We view none of the present
limitation as being fundamental.

Report organization

Section 1 presents an overview of the project and snapshots of subsystems and components
the prototype developed. Section 2 discusses the technical objectives of the project. Section 3
discusses the system concept and implementation, and section 4 compares the results of the
phase II effort to the objectives and the original designs for the project. Section 5 presents the
conclusions.

Figure 1-1 TOPIT concept. Physical switches and knobs are positioned in a virtual
environment under software control to provide flexible force and tactile feedback.

2

vo;

W.R

IVA lp 111,2f 7- i .1 . , - . ,
MIN.,

043

LN 0. 1 , f,'n

FV

Figure 1-2 TOPITPrototype.

3

all

Figure 1-3.1 User station showing joystick,
throttle, instrumented glove, and

helmet-mounted display.

Figure 1-3.2 Joystick and instrumented glove.

4

~,7

Figure 1-3.3 Multisensor.

Figure 1-3.4 Throttle and emergency stop button.

5

Figure 1-3.5 Magnetic tracker transmitter.

Figure 1-3.6 Y-axis servo motor.

6

Figure 1-3.7 Servo electronics cabinet.

Figure 1-3.8 Touchpanel.

8

2. Summary of Technical Objectives and Approach

The primary objective of the Phase II effort was to design, construct, and evaluate the TOPIT
force and tactile feedback system through a complete implementation of a virtual cockpit. We
considered developing a partial implementation, without the visual simulation of the virtual
environment. The visual environment, however, was necessary to guide the user to each
specific point in virtual space where a virtual control was located. Without the visual
simulation, the touchboard could only be guided to mirror hand and finger position, and the
demonstration would miss the whole aspect of predicting hand trajectory, selecting the correct
control, and fixing the control position in time to be touched. Also missing would have been
the aspect of treating head tracker and image generator delays. With so much missing, we
concluded that a partial implementation would be unconvincing in proving the TOPIT concept.
The approach we adopted paid special attention to the risk areas identified in the Phase I
study. The risk areas, identified in the Phase II proposal, and our approach to each key risk
area were as follows:

(1) We wanted to build a positioning system that moved fast enough, but without
excessive size, power, or cost was to be approached through a combination of rapid
prototyping, in which the linear transport mechanism for the x-axis positioning was built
experimentally using stepper motor and servomechanism implementations, and payload
weight was minimized through careful design that encompassed the use of lightweight
materials.

(2) We needed to ensure the tracking system provided sufficient accuracy in the
presence of the electromagnetic noise and moving metal objects of the positioning system was
approached by use of a pulsed rather than continuous wave tracker, synchronization of tracker
pulses between motor steps, noise minimization by shielding, and by careful tracker
transmitter placement. If problems persisted, a noise immune, but somewhat encumbering,
mechanical tracker was to be used to support development.

(3) We needed to design hand motion prediction algorithms that predicted which
control would be touched while sufficient time remained to put it in place was first approached
at the system level using the basic hand motion data obtained in Phase I. These data bound the
performance of the algorithm. However, considerable experimentation were made to fine tune
the algorithms. Also, an alternative tracking system was developed that minimizes the need for
such prediction algorithms.

(4) Keeping computation and control lags small enough so that the positioning
system had sufficient time to position the touchboard was a fundamental systems engineering
task required careful accounting of each time lag in the system. Continual refinement of the
timing budget allowed early identification of problems. Computational problems could be
treated by using dedicated board level processors for the control algorithms, by microcoding
key computations, and by using interrupt-driven synchronized event processing.

(5) Providing redundant safety systems to protect the operator during development
and use was considered to employ software to ensure the positioning system is commanded to
stop before the tracked hand moves into the motion space, an independent light curtain
electronic system that directly shuts down the system upon any intrusion into the motion

9

space, and mechanical guards around the working mechanisms to ensure than intruding
elements were deflected rather than caught or pinched.

The identified technical risks made the Phase Hl implementation a major systems
engineering challenge. Along with the direct risk of meeting the technical objectives was the
associated risk of keeping the project on schedule and within budget as the various challenges
were faced. The results are presented in the following two chapters.

10

3. System Concept

A traditional flight simulator is built using a replica of the cockpit of the aircraft being
simulated. Building a replica cockpit is expensive, as a different replica cockpit is needed for
every type of aircraft to be simulated, and it is difficult to keep up with changes made to the
real aircraft. Conceptually, it would be better to have a virtual cockpit in which the elements of
the cockpit are determined entirely by software. Then the expense of constructing physical
replicas could be saved; one simulator could be used for many different types of aircraft, and
after the simulators are in service the simulators could be quickly updated to reflect
modifications in the real aircraft.

For a virtual cockpit, the appearance of a cockpit can be represented by computer generated
imagery on a head-mounted display (HMD) worn by the user. The fidelity of this approach is
limited by the resolution of the HMD and by the realism of the computer generated imagery
for the display. HMD technology and image generator technology are such that the best
currently available technology is probably barely acceptable for the application, and even then
at relatively high cost. However, current trends toward lower cost and improved performance
should close the performance gap considerably within a few years' time.

In addition to a visual simulation, a virtual cockpit also needs a simulation of the force and
tactile sensations of touching the controls. The controls include the primary controls and the
instrument panel controls. The primary controls are the joystick and rudder pedals or their
equivalents for steering the aircraft. The instrument panel controls include switches, knobs,
push buttons, and keypads. Replica controls could be provided to be used with the simulated
imagery, but doing so would not meet the objective of having a simulator that is reconfigurable
in software.

For the prototype virtual cockpit discussed here, replicas were used for the primary
controls, but a software reconfigurable approach was adopted for the instrument panel
controls. Because the simulator user is wearing a head-mounted display, and because the user
touches only one instrument control at a time, it suffices to present to the user only the single
control being touched. This is accomplished by using a collection of about a dozen different
types of physical replicas of controls, and putting the correct type into the correct place to be
touched whenever the user actuates a control.

To select the correct type of control and put it into place, the user's hand and fingers must
be tracked and the positions extrapolated forward to determine which control will be grasped.
A robotic mechanism' then quickly puts the correct type of control .into place in time to be
actuated. A user may believe that different toggle switches are being flipped at different places
on the instrument panel, but in fact the same toggle switch is being touched in all the different
positions. A mechanism must be provided to put the switch in the correct "up" or "down"
position while the switch is being moved to a new position. Similarly, rotary controls must be
brought into correspondence with the way each control appears in the user's HMD imagery.

For the concept to be practical, the few replica controls must be moved rapidly to stay
ahead of the user's hand motions. The requirements were quantified by analyzing cockpit
videotapes taken in flight and also videotapes taken in a lab setup. In the lab, a number of non-
pilot subjects were videotaped as they actuated switches and knobs in a prescribed sequence.
Timing requirements were determined by stepping through the videotapes frame-by-frame

11

and recording the times required to reach the controls. The derived requirements were that the
controls must be repositioned with an acceleration of up to four g's and a speed of about three
meters per second. Maximum acceleration and deceleration are required when closely-spaced
controls are actuated in sequence.

3.1 System Configuration
The system is designed with three major subsystems, one each for robotics, tracking, and visual
simulation [Fig. 3.1-1]. Each subsystem is controlled by its own computer, with
communications links transferring data among the three control computers.

VISUAL
computer TRACKING ROBOTIC
& image computer computer

generator I- I T7
Data glove iMagnetic tracker

I I Positioning
d Inertial sensors mechanismHead mounted , r4I

display Flight controls & payload

Figure 3.1-1 Three major subsystems.

The tracking subsystem is built around a personal computer running the QNX real time
operating system [Figure 3.1-2]. The tracking computer interfaces with the hardware that
measures the position and orientation of the user's head and right hand and runs software that
filters and extrapolates the tracking data. It determines which switch the user is about to
actuate and sends commands to the robotics subsystem to move the selected switch into place.
It keeps track of the orientations to which the knobs and toggle switches are moved. It also
interfaces to the user's flight control joystick and throttle and computes the position of the
simulated aircraft. The tracking computer sends the positions and orientations of the head,
hand, and switches to the visual simulation subsystem, which in turn generates imagery for
viewing in the user's HMD.

The robotics subsystem includes a VME-rack with a control processor and interfaces, servo
power supplies and amplifiers, and power distribution circuitry. The VME-based control
processor receives high level commands from the tracking computer over a 38.4 Kb serial
interface. The commands from the tracking computer instruct the robotics subsystem to move
each of the servo-driven positioning mechanisms to prescribed locations or orientations. The
robotics control processor carries out the commands by generating control voltages for each of
the servo-motor amplifiers. The motors are equipped with digital shaft encoders and each
motor channel is run closed-loop with an update rate of approximately 100 Hz. Each channel is
tuned for the inertia and spring constants associated with the channels' hardware.

12

Figure 3.1-2 TOPIT tracking computer, magnetic tracker electronics (right) and HMD
electronics (on top of computer).

The visual subsystem is built around a Silicon Graphics Onyx computer having a
RealityEngine2 image generator. The visual computer receives data from the tracking
subsystem over a dedicated Ethernet link having less than one millisecond latency. The visual
computer has a database of polygons modeling the cockpit interior, the user's hand, and terrain
outside the simulated aircraft. It assembles the scene from the polygon models, putting each
model in its correct relative position. A dataglove worn by the user provides the positions of
the fingers directly to the visual computer.

3.2 Tracker
Magnetic trackers are commonly used in virtual reality systems. They use compact, lightweight
sensors, are unencumbering, measure all three position coordinates and all three orientation
angles, and are economical. The limitations of magnetic sensors are that metallic objects distort
the tracker fields thereby producing static errors, they are susceptible to interference from
electrical noise sources, and there tends to be lags in the measurements. The lags come from
filtering the noise inherent in the measurements. In many applications, none of the limitations
prove severe. For the virtual cockpit, however, the tracking could not lag significantly and
must work in the presence of the metal and motors of the robotic positioning device.

One alternative to magnetic tracking was mechanical tracking. A mechanical tracker uses
stiff rods connected by joints having encoders. Mechanical trackers are low cost, extremely
accurate, immune to noise, and have no appreciable lag. Unfortunately, mechanical trackers are
encumbering since they require a mechanical linkage to the users head or hand. They are best
used when the space of possible motion is small, and might be acceptable for head tracking a
seated user. For hand tracking in a virtual cockpit, the encumbrance would not be acceptable in
the long run. Nonetheless, mechanical tracking could be a backup method, at least for lab
evaluation of the virtual cockpit.

13

There were a number of optical tracking systems available. These systems use a variety of
principles for tracking. Some use high resolution cameras tracking reflective markers. Others
use sensors that detect a scanning infrared laser. Optical tracking systems are typically so
accurate that the orientation of a surface can be computed by tracking three points on the
surface. Optical tracking would be a good choice for a virtual cockpit, but the cost of
commercially available systems ruled it out for the prototype.

The alternatives were to work with the limitations of magnetic trackers or to attempt
development of a low-cost optically-based tracking system. We opted to work with the
magnetic tracker. To minimize magnetic field distortions, the robotic mechanism would have to
be made from non-magnetic material. Aluminum was tested and found to be nearly as bad as
carbon steel in inducing tracker distortions; it apparently induced distortions in the electric
field component of the tracker transmission. The best metal was non-magnetic stainless steel
(series 300), so that was preferred for construction. Wood or plastic might have been used, but
the structure could not be made acceptably stiff.

As it turned out, the distortions due to the metal structure were up to about 4 cm of error,
which could be reduced substantially by calibration and look-up tables. The goal was to
provide overall tracking accuracy of about 5 mm, which seems achievable.

To treat the problem of tracker lag, an inertial sensor package was added to the magnetic
hand tracker. The package initially consisted of three miniature accelerometers and three
angular rate sensors. This inertial package was larger than desired, about three inches square
and an inch think; however, it could be mounted on the forearm rather than on the hand itself.

The alignment of the axis of each sensor was required to be orthogonal in order for the
software to receive correct information. This was not attainable with the aforementioned setup,
so two replacement sensors were purchased - a triaxial rate gyro and a triaxial accelerometer.
This new inertial package was slightly more compact and could be fitted on the user's wrist.

Combined with inertial data, the magnetic tracker data could be smoothed with only about
a fifth of its typical lag, roughly 30 milliseconds rather than 150 milliseconds. Also, the accurate
velocity and acceleration measurements enabled better extrapolation of the hand position.
Extrapolation is required to compensate for delays of 30 to 60 milliseconds in the image
generator, and to extrapolate the hand position to determine which switch is selected.

The magnetic and inertial tracking data are combined in software using Kalman filtering, a
technique often applied in multi-sensor navigation systems. The computational requirements
of the filter are just within the capabilities of a 200 MHz personal computer, although they
could be reduced with more optimization.

3.3 Robotic Mechanism
The starting point for selecting a robotic mechanism was to consider off-the-shelf devices

such as industrial robots. The robot must position a payload having an assortment of controls
together with the motors necessary to reposition the rotary controls and toggle switches. An
initial estimate was that the payload would weigh about five kilograms, although the ultimate
design totaled about eight kilograms -- a consequence of the stainless steel construction.

Industrial robots were available which meet the requirements, but they are large, high
powered, and expensive. Industrial robots are designed to have a long reach into a large
workspace, and consequently are built with heavy links which in turn must be driven by
powerful drive mechanisms. Cockpit instrument panels are wide and fairly high, but the panel
surface does not encompass much depth. A custom robotic device was designed to take
advantage of the restricted workspace. It cost less and is safer than an industrial robot.

14

The large reach of the industrial robot would have posed a safety problem. Potentially, the
robot could move respectable masses at high speeds into the space of the user. Since it would
not be acceptable to operate only with software limits the robot would have to be physically
modified to make it impossible to travel into the user's space. The customization required
would further added to the cost of the device.

Finally, industrial robots are not typically made of non-magnetic stainless steel. Making a
new device permitted constraining the design to be compatible with magnetic tracking. In a
new design, the electric motors could be positioned as far away from the trackers as possible.

The manipulator design recalls some of the design features of an old-fashioned pen plotter

[Figures 3.3-1 and 3.3-2]. The horizontal and vertical axes are driven byKevlarTM cables. Using
cables for both drive mechanisms avoids making the outer axis motor bear the burden of
having to move the inner axis motors. Both major axis drive motors are affixed to the frame,
one on either side, near the ground, and back from the trackers. A relatively small motor,
which moves the payload in and out, is carried with the payload. The electronics cabinet,
which houses the servo electronics and system power control and safety circuitry, can be seen
to the left of the user [Figure 3.3-2].

.....:.

Figure 3.3-1 TOPIT system showing operator's station, X-Y manipulator, and touchboard.

15

Figure 3.3-2 The final design uses cables to position the switch payload in x and y axes.

The main design feature for safety is constraining the user and the robotic mechanisms to
their own workspaces. The user must cross into the robot's workspace to touch the payload
controls, but the hand is tracked and the software is designed to bring the mechanism to a halt
before the hand crosses into the mechanism area. Still, one must account for possible software
failures, for untracked parts of the user's body, and for bystanders. These additional safety
provisions are discussed in section 4.5.

In the current design only the head and the right hand are tracked. Tracking the left hand is
mainly a cost issue, and doing so would allow controls to be actuated with either hand as well
as enhancing safety. The untracked left hand is required to be kept on the throttle. A switch on
the throttle must be continually depressed; if it is released the mechanism halts. The throttle
switch tends to keep the user properly seated away from the mechanism. A second switch
could be added to the seat back to further ensure the head is kept back from the mechanism;
leaning forward would release the seat switch and stop the mechanism.

The payload [Fig. 3.3-3] moves with maximum speed about equal to a hand moved
laterally to activate a switch. This is not fast enough to cause a serious injury if, due to a system
failure, it were to hit the user's hand in motion. A potential danger lies in pinch points, where
the users hand might be caught in a closing space between the frame and the payload or
traveler. Pinch points are prevented by making the frame oversized and mounting rubber
blocks to stop mechanical travel short of the frame.

An emergency stop circuit is included in the design. This circuit is hardwired to a single
relay that disconnects and then short-circuits the drive motors, quickly bringing the
mechanism to a halt. When the virtual cockpit is in operation, an observer can actuate one of
two emergency stop switches if the user or a spectator gets too close to the mechanism.

16

Figure 3.3-3 The payload includes switches and knobs which are rotated to the needed
orientation.

Covers would be added to any production device to prevent a bystander from reaching any
of the drive mechanisms from the sides or rear of the device.

3.4 Visual Simulation
The Onyx RealityEngine2 computer uses position data from the tracker to prepare the visual
scene from pre-stored polygon models of the cockpit, the user's hand, and the out-the-window
terrain [Fig. 3.4-11. The Onyx computer runs a real time version of UNIX in two processors, and
we wrote the visual simulation using Silicon Graphic's Performer application package.

There is a delay of one to two video frames in generating the image, marked from the time
position data arrives in the tracking computer until the generated image is displayed to the
user. The image is generated to correspond to where each moving element of the scene is
expected to be at the time when the image appears. Consequently, the position and orientation
of every moving element in the scene must be extrapolated forward from the time at which the
position and orientation of the element were measured to the time at which the image appears.
Simple extrapolation using velocities and accelerations works adequately for times up to about
100 milliseconds.

The imagery is presented to the user on a head-mounted display. Separate images are
computed for each eye to provide true stereo. The user's judgment of his hand position relative
to the instrument panel is helped significantly by having stereo imagery.

17

